lrn_op_test.cc 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/lrn_op.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>

#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

/**
 * @brief get sum of x^2 between channels [size elements]
 *
 * @tparam float
 * @param input
 * @param channel_id: the c-th channel within n-th graph.
 * @param offset_within_channel: the pixel's offset within a channel.
 * @param offset_num: the first address of n-th graph.
 * @param c
 * @param h
 * @param w
 * @param size
 * @return float
 */
float lrn_square(const float* input,
                 int channel_id,
                 int offset_within_channel,
                 int offset_num,
                 int c,
                 int h,
                 int w,
                 int size) {
  int pre_pad = (size - 1) / 2;
  float res = 0;
  const float* src = input + offset_num;

  // handle left channels with padding situation.
  if (channel_id - pre_pad < 0) {
    for (int i = 0; i <= channel_id; ++i) {
      res += src[i * h * w + offset_within_channel] *
             src[i * h * w + offset_within_channel];
    }
  }

  // handle left channels.
  if (channel_id - pre_pad >= 0) {
    for (int i = channel_id - pre_pad; i <= channel_id; ++i) {
      res += src[i * h * w + offset_within_channel] *
             src[i * h * w + offset_within_channel];
    }
  }

  // handle right channels.
  if (channel_id + pre_pad < c) {
    for (int i = channel_id + 1; i <= channel_id + pre_pad; ++i) {
      res += src[i * h * w + offset_within_channel] *
             src[i * h * w + offset_within_channel];
    }
  }

  // handle right channels with padding situation.
  if (channel_id + pre_pad >= c && channel_id + 1 < c) {
    for (int i = channel_id + 1; i < c; ++i) {
      res += src[i * h * w + offset_within_channel] *
             src[i * h * w + offset_within_channel];
    }
  }

  return res;
}

void lrn_compute_ref(std::shared_ptr<operators::LrnOpLite> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x =
      scope->FindVar(op_info->Input("X").front())->GetMutable<lite::Tensor>();
  auto out = scope->FindVar(op_info->Output("Out").front())
                 ->GetMutable<lite::Tensor>();

  const float* x_data = x->data<const float>();
  float* out_data = out->mutable_data<float>();
  auto x_dims = x->dims();

  auto alpha = op_info->GetAttr<float>("alpha");
  auto beta = op_info->GetAttr<float>("beta");
  auto k = op_info->GetAttr<float>("k");
  auto norm_region = op_info->GetAttr<std::string>("norm_region");
  auto local_size = op_info->GetAttr<int>("n");

  int N = x_dims[0];
  int C = x_dims[1];
  int H = x_dims[2];
  int W = x_dims[3];

  int offset_num = 0;
  int offset_within_channel = 0;
  int dst_id;

  float square;

  for (int n = 0; n < N; ++n) {
    offset_num = n * C * H * W;

    for (int c = 0; c < C; ++c) {
      for (int h = 0; h < H; ++h) {
        for (int w = 0; w < W; ++w) {
          offset_within_channel = h * W + w;
          dst_id = offset_num + c * H * W + offset_within_channel;
          square = lrn_square(x_data,
                              c,
                              offset_within_channel,
                              offset_num,
                              C,
                              H,
                              W,
                              local_size);
          out_data[dst_id] = x_data[dst_id] * pow(k + alpha * square, -beta);
        }
      }
    }
  }
}

void test_lrn(float alpha,
              float beta,
              float k,
              int local_size,
              int n,
              int c,
              int h,
              int w,
              const std::string& norm_region) {
  Scope scope;
  std::string x_var_name("X_test");
  std::string out_var_name("Out_test");
  std::string out_ref_var_name("Out_ref");
  auto* x = scope.NewTensor(x_var_name);
  auto* out = scope.NewTensor(out_var_name);
  auto* out_ref = scope.NewTensor(out_ref_var_name);

  std::vector<int64_t> x_dim{n, c, h, w};
  x->Resize(x_dim);
  out->Resize(x_dim);
  out_ref->Resize(x_dim);
  auto* x_data = x->mutable_data<float>();
  FillTensor<float, float>(x, 0.f, 1.f);
  /* for (size_t i = 0; i < x->data_size(); i++) { */
  /*   x_data[i] = i; */
  /* } */
  float *dmax, *dmin;
  std::tie(dmin, dmax) =
      std::minmax_element(x_data, x_data + x->data_size() - 1);
  printf("max: %f, min: %f\n", *dmax, *dmin);

  cpp::OpDesc opdesc;
  opdesc.SetType("lrn");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("alpha", alpha);
  opdesc.SetAttr("beta", beta);
  opdesc.SetAttr("k", k);
  opdesc.SetAttr("n", local_size);
  opdesc.SetAttr("norm_region", norm_region);
  opdesc.SetAttr<float>("input_scale", (*dmax - *dmin) / 255.f);

  auto op = CreateOp<operators::LrnOpLite>(opdesc, &scope);

  // baseline
  lrn_compute_ref(op);
  out_ref->CopyDataFrom(*out);

  LaunchOp(op, {x_var_name}, {out_var_name});

  auto* output_data = out->mutable_data<float>();
  auto* output_ref_data = out_ref->mutable_data<float>();
  for (size_t i = 0; i < out->data_size(); i++) {
    EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-4);
  }
}

TEST(MLUBridges, lrn) {
  int local_size = 5;
  float alpha = 0.0001f;
  float beta = 0.75;
  float k = 2.0f;
  std::string norm_region = "AcrossChannels";
  for (int w : {2, 4, 8}) {
    for (int h : {2, 4, 8}) {
      for (int c : {1, 2, 3, 4}) {
        for (int n : {1, 2, 3, 4}) {
          test_lrn(alpha, beta, k, local_size, n, c, h, w, norm_region);
        }
      }
    }
  }
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

USE_SUBGRAPH_BRIDGE(lrn, kMLU)