提交 db21f878 编写于 作者: D dingminghui 提交者: jackzhang235

feat(kernel): add mlu lrn convertor

上级 ff9cf6f4
......@@ -4,6 +4,9 @@ lite_cc_library(subgraph_detector
lite_cc_library(subgraph_pass
SRCS subgraph_pass.cc
DEPS mir_pass types context ${mir_fusers} subgraph_detector)
if (LITE_BUILD_EXTRA)
target_compile_definitions(subgraph_pass PUBLIC "-DLITE_BUILD_EXTRA")
endif()
if (WITH_TESTING AND NOT LITE_WITH_CUDA)
lite_cc_test(test_subgraph_detector
SRCS subgraph_detector_test.cc
......
......@@ -38,6 +38,12 @@ set(mlu_subgraph_bridges
subgraph_bridge_dropout_op_mlu
CACHE INTERNAL "mlu_subgraph_bridges")
if (LITE_BUILD_EXTRA)
lite_cc_library(subgraph_bridge_lrn_op_mlu SRCS lrn_op.cc DEPS ${subgraph_bridge_deps_mlu})
list(APPEND mlu_subgraph_bridges subgraph_bridge_lrn_op_mlu)
endif()
lite_cc_library(subgraph_test_helper_mlu SRCS test_helper.cc DEPS ${mlu_subgraph_bridges})
lite_cc_test(test_conv_converter_mlu SRCS conv_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program ${mlu_subgraph_bridges} subgraph_compute_mlu subgraph_test_helper_mlu)
lite_cc_test(test_act_converter_mlu SRCS act_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program ${mlu_subgraph_bridges} subgraph_compute_mlu subgraph_test_helper_mlu)
......@@ -51,4 +57,7 @@ lite_cc_test(test_interp_converter_mlu SRCS interpolate_op_test.cc DEPS scope op
lite_cc_test(test_concat_converter_mlu SRCS concat_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program ${mlu_subgraph_bridges} subgraph_compute_mlu subgraph_test_helper_mlu)
lite_cc_test(test_transpose_converter_mlu SRCS transpose_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program ${mlu_subgraph_bridges} subgraph_compute_mlu subgraph_test_helper_mlu)
lite_cc_test(test_dropout_converter_mlu SRCS dropout_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program ${mlu_subgraph_bridges} subgraph_compute_mlu subgraph_test_helper_mlu)
if (LITE_BUILD_EXTRA)
lite_cc_test(test_lrn_converter_mlu SRCS lrn_op_test.cc DEPS scope optimizer target_wrapper_host model_parser program ${mlu_subgraph_bridges} subgraph_compute_mlu subgraph_test_helper_mlu)
endif()
message(STATUS "+++++ mlu_subgraph_bridges: ${mlu_subgraph_bridges}")
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {
int LrnConverter(void* ctx, OpLite* op, KernelBase* kernel) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto op_info = op->op_info();
auto op_type = op_info->Type();
auto scope = op->scope();
VLOG(3) << "[MLU] Converting " + op_type + "...";
// Create lrn node and get params from op
auto fp_type = graph->FPType();
auto x_var_name = op_info->Input("X").front();
auto out_var_name = op_info->Output("Out").front();
auto output = scope->FindVar(out_var_name)->GetMutable<Tensor>();
auto output_dims = output->dims().Vectorize();
auto output_tensor = graph->AddNode(
out_var_name, output_dims, CNML_TENSOR, CNML_NCHW, fp_type);
CHECK(graph->HasNode(x_var_name));
auto input_tensor = graph->GetNode(x_var_name);
auto alpha = op_info->GetAttr<float>("alpha");
auto beta = op_info->GetAttr<float>("beta");
auto k = op_info->GetAttr<float>("k");
if (op_info->HasAttr("norm_region")) {
CHECK(op_info->GetAttr<std::string>("norm_region") == "AcrossChannels")
<< "Unsuport WithinChannel";
}
auto local_size = op_info->GetAttr<int>("n");
CHECK(op_info->HasAttr("input_scale"));
auto input_scale = op_info->GetAttr<float>("input_scale");
std::cout << "input scale: " << input_scale << std::endl;
cnmlLrnOpParam_t param;
cnmlBaseOp_t lrn_op;
CNML_CALL(
cnmlCreateLrnOpParam(&param, CNML_LRN_V3, local_size, alpha, beta, k));
CNML_CALL(cnmlCreateLrnOp(
&lrn_op, param, input_tensor->mlu_tensor(), output_tensor->mlu_tensor()));
CNML_CALL(cnmlDestroyLrnOpParam(&param));
graph->SetComputingDataType(
lrn_op, input_tensor->mlu_tensor(), 1 / input_scale);
CNML_CALL(cnmlSetOperationComputingDataType(
lrn_op, output_tensor->mlu_tensor(), fp_type, nullptr));
graph->FuseOp(lrn_op);
CNML_CALL(cnmlDestroyBaseOp(&lrn_op));
return SUCCESS;
}
} // namespace mlu
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(lrn, kMLU, paddle::lite::subgraph::mlu::LrnConverter);
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/operators/lrn_op.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include "lite/core/op_lite.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/mlu/bridges/test_helper.h"
#include "lite/kernels/npu/bridges/registry.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {
/**
* @brief get sum of x^2 between channels [size elements]
*
* @tparam float
* @param input
* @param channel_id: the c-th channel within n-th graph.
* @param offset_within_channel: the pixel's offset within a channel.
* @param offset_num: the first address of n-th graph.
* @param c
* @param h
* @param w
* @param size
* @return float
*/
float lrn_square(const float* input,
int channel_id,
int offset_within_channel,
int offset_num,
int c,
int h,
int w,
int size) {
int pre_pad = (size - 1) / 2;
float res = 0;
const float* src = input + offset_num;
// handle left channels with padding situation.
if (channel_id - pre_pad < 0) {
for (int i = 0; i <= channel_id; ++i) {
res += src[i * h * w + offset_within_channel] *
src[i * h * w + offset_within_channel];
}
}
// handle left channels.
if (channel_id - pre_pad >= 0) {
for (int i = channel_id - pre_pad; i <= channel_id; ++i) {
res += src[i * h * w + offset_within_channel] *
src[i * h * w + offset_within_channel];
}
}
// handle right channels.
if (channel_id + pre_pad < c) {
for (int i = channel_id + 1; i <= channel_id + pre_pad; ++i) {
res += src[i * h * w + offset_within_channel] *
src[i * h * w + offset_within_channel];
}
}
// handle right channels with padding situation.
if (channel_id + pre_pad >= c && channel_id + 1 < c) {
for (int i = channel_id + 1; i < c; ++i) {
res += src[i * h * w + offset_within_channel] *
src[i * h * w + offset_within_channel];
}
}
return res;
}
void lrn_compute_ref(std::shared_ptr<operators::LrnOpLite> op) {
Scope* scope = op->scope();
const OpInfo* op_info = op->op_info();
auto x =
scope->FindVar(op_info->Input("X").front())->GetMutable<lite::Tensor>();
auto out = scope->FindVar(op_info->Output("Out").front())
->GetMutable<lite::Tensor>();
const float* x_data = x->data<const float>();
float* out_data = out->mutable_data<float>();
auto x_dims = x->dims();
auto alpha = op_info->GetAttr<float>("alpha");
auto beta = op_info->GetAttr<float>("beta");
auto k = op_info->GetAttr<float>("k");
auto norm_region = op_info->GetAttr<std::string>("norm_region");
auto local_size = op_info->GetAttr<int>("n");
int N = x_dims[0];
int C = x_dims[1];
int H = x_dims[2];
int W = x_dims[3];
int offset_num = 0;
int offset_within_channel = 0;
int dst_id;
float square;
for (int n = 0; n < N; ++n) {
offset_num = n * C * H * W;
for (int c = 0; c < C; ++c) {
for (int h = 0; h < H; ++h) {
for (int w = 0; w < W; ++w) {
offset_within_channel = h * W + w;
dst_id = offset_num + c * H * W + offset_within_channel;
square = lrn_square(x_data,
c,
offset_within_channel,
offset_num,
C,
H,
W,
local_size);
out_data[dst_id] = x_data[dst_id] * pow(k + alpha * square, -beta);
}
}
}
}
}
void test_lrn(float alpha,
float beta,
float k,
int local_size,
int n,
int c,
int h,
int w,
const std::string& norm_region) {
Scope scope;
std::string x_var_name("X_test");
std::string out_var_name("Out_test");
std::string out_ref_var_name("Out_ref");
auto* x = scope.NewTensor(x_var_name);
auto* out = scope.NewTensor(out_var_name);
auto* out_ref = scope.NewTensor(out_ref_var_name);
std::vector<int64_t> x_dim{n, c, h, w};
x->Resize(x_dim);
out->Resize(x_dim);
out_ref->Resize(x_dim);
auto* x_data = x->mutable_data<float>();
FillTensor<float, float>(x, 0.f, 1.f);
/* for (size_t i = 0; i < x->data_size(); i++) { */
/* x_data[i] = i; */
/* } */
float *dmax, *dmin;
std::tie(dmin, dmax) =
std::minmax_element(x_data, x_data + x->data_size() - 1);
printf("max: %f, min: %f\n", *dmax, *dmin);
cpp::OpDesc opdesc;
opdesc.SetType("lrn");
opdesc.SetInput("X", {x_var_name});
opdesc.SetOutput("Out", {out_var_name});
opdesc.SetAttr("alpha", alpha);
opdesc.SetAttr("beta", beta);
opdesc.SetAttr("k", k);
opdesc.SetAttr("n", local_size);
opdesc.SetAttr("norm_region", norm_region);
opdesc.SetAttr<float>("input_scale", (*dmax - *dmin) / 255.f);
auto op = CreateOp<operators::LrnOpLite>(opdesc, &scope);
// baseline
lrn_compute_ref(op);
out_ref->CopyDataFrom(*out);
LaunchOp(op, {x_var_name}, {out_var_name});
auto* output_data = out->mutable_data<float>();
auto* output_ref_data = out_ref->mutable_data<float>();
for (size_t i = 0; i < out->data_size(); i++) {
EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-4);
}
}
TEST(MLUBridges, lrn) {
int local_size = 5;
float alpha = 0.0001f;
float beta = 0.75;
float k = 2.0f;
std::string norm_region = "AcrossChannels";
for (int w : {2, 4, 8}) {
for (int h : {2, 4, 8}) {
for (int c : {1, 2, 3, 4}) {
for (int n : {1, 2, 3, 4}) {
test_lrn(alpha, beta, k, local_size, n, c, h, w, norm_region);
}
}
}
}
}
} // namespace mlu
} // namespace subgraph
} // namespace lite
} // namespace paddle
USE_SUBGRAPH_BRIDGE(lrn, kMLU)
......@@ -31,3 +31,6 @@ USE_SUBGRAPH_BRIDGE(scale, kMLU);
USE_SUBGRAPH_BRIDGE(sigmoid, kMLU);
USE_SUBGRAPH_BRIDGE(elementwise_mul, kMLU);
USE_SUBGRAPH_BRIDGE(dropout, kMLU);
#ifdef LITE_BUILD_EXTRA
USE_SUBGRAPH_BRIDGE(lrn, kMLU)
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册