conv_add_bn_kernel.cpp 3.7 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADDBN_OP

#include "operators/kernel/conv_add_bn_kernel.h"
#include "fpga/api/fpga_api.h"
H
hanbuhe 已提交
19
#include "fpga/quantilization.h"
Z
zhangyang 已提交
20 21 22 23 24 25

namespace paddle_mobile {
namespace operators {

template <>
bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam *param) {
Z
zhangyang 已提交
26
  bool relu_enabled = false;
Z
zhangyang 已提交
27
  const Tensor *input = param->Input();
Z
zhangyang 已提交
28
  auto input_ptr = input->data<half>();
Z
zhangyang 已提交
29 30 31
  const Tensor *bias = param->Bias();
  auto bias_ptr = bias->data<float>();
  const Tensor *filter = param->Filter();
H
hanbuhe 已提交
32

Z
zhangyang 已提交
33
  Tensor *out = param->Output();
Z
zhangyang 已提交
34
  auto out_ptr = out->mutable_data<half>();
Z
zhangyang 已提交
35 36 37 38 39
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
40 41
  PADDLE_MOBILE_ENFORCE(input->dims()[1] == bias->dims()[0] &&
                            bias->dims()[0] == param->InputBias()->dims()[0],
Z
zhangyang 已提交
42 43 44
                        "Image channel should be equal to bias number");

  const int channel = input->dims()[1];
H
hanbuhe 已提交
45 46
  float *bs_ptr =
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
Z
zhangyang 已提交
47 48 49 50 51 52
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
Z
zhangyang 已提交
53 54 55 56 57 58
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_bias_ptr[i] =
        bn_bias_ptr[i] + (bias_ptr[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
    bs_ptr[i * 2] = new_scale_ptr[i];
    bs_ptr[i * 2 + 1] = new_bias_ptr[i];
Z
zhangyang 已提交
59 60 61 62
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

H
hanbuhe 已提交
63 64 65 66 67 68
  const Tensor *quant_filter = quantilize_filter(filter);

  // delete original filter?
  filter = quant_filter;

  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
69 70
  fpga::ConvArgs convArgs;
  convArgs.relu_enabled = relu_enabled;
H
hanbuhe 已提交
71
  convArgs.filter_address = reinterpret_cast<void *> filter_ptr;
Z
zhangyang 已提交
72 73
  convArgs.filter_num = filter->dims()[0];
  convArgs.group_num = param->Groups();
H
hanbuhe 已提交
74
  convArgs.sb_address = reinterpret_cast<void *> bs_ptr;
Z
zhangyang 已提交
75 76 77 78
  convArgs.kernel.stride_h = param->Strides()[0];
  convArgs.kernel.stride_w = param->Strides()[1];
  convArgs.kernel.height = filter->dims()[2];
  convArgs.kernel.width = filter->dims()[3];
H
hanbuhe 已提交
79
  convArgs.image.address = reinterpret_cast<void *> input_ptr;
Z
zhangyang 已提交
80 81 82 83 84 85
  convArgs.image.channels = input->dims()[1];
  convArgs.image.height = input->dims()[2];
  convArgs.image.width = input->dims()[3];
  convArgs.image.pad_height = param->Paddings()[0];
  convArgs.image.pad_width = param->Paddings()[1];
  convArgs.image.scale_address = input->fpga_args().scale_pointer();
H
hanbuhe 已提交
86
  convArgs.output.address = reinterpret_cast<void *> out_ptr;
Z
zhangyang 已提交
87 88
  convArgs.output.scale_address = out->fpga_args().scale_pointer();
  param->SetFpgaArgs(convArgs);
H
hanbuhe 已提交
89

Z
zhangyang 已提交
90 91 92 93
  return true;
}

template <>
Z
zhangyang 已提交
94 95
void ConvAddBNKernel<FPGA, float>::Compute(
    const FusionConvAddBNParam &param) const {
Z
zhangyang 已提交
96 97 98 99 100 101 102 103
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif