conv_add_bn_kernel.cpp 3.5 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADDBN_OP

#include "operators/kernel/conv_add_bn_kernel.h"
#include "fpga/api/fpga_api.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvAddBNKernel<FPGA, float>::Init(FusionConvAddBNParam *param) {
Z
zhangyang 已提交
25
  bool relu_enabled = false;
Z
zhangyang 已提交
26
  const Tensor *input = param->Input();
Z
zhangyang 已提交
27
  auto input_ptr = input->data<half>();
Z
zhangyang 已提交
28 29 30 31 32
  const Tensor *bias = param->Bias();
  auto bias_ptr = bias->data<float>();
  const Tensor *filter = param->Filter();
  auto filter_ptr = filter->data<float>();
  Tensor *out = param->Output();
Z
zhangyang 已提交
33
  auto out_ptr = out->mutable_data<half>();
Z
zhangyang 已提交
34 35 36 37 38
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
39 40
  PADDLE_MOBILE_ENFORCE(input->dims()[1] == bias->dims()[0] &&
                            bias->dims()[0] == param->InputBias()->dims()[0],
Z
zhangyang 已提交
41 42 43 44 45 46 47 48 49 50
                        "Image channel should be equal to bias number");

  const int channel = input->dims()[1];
  float *bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sizeof(float));
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
Z
zhangyang 已提交
51 52 53 54 55 56
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_bias_ptr[i] =
        bn_bias_ptr[i] + (bias_ptr[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
    bs_ptr[i * 2] = new_scale_ptr[i];
    bs_ptr[i * 2 + 1] = new_bias_ptr[i];
Z
zhangyang 已提交
57 58 59 60 61 62
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

  fpga::ConvArgs convArgs;
  convArgs.relu_enabled = relu_enabled;
Z
zhangyang 已提交
63
  convArgs.filter_address = (void *)filter_ptr;
Z
zhangyang 已提交
64 65
  convArgs.filter_num = filter->dims()[0];
  convArgs.group_num = param->Groups();
Z
zhangyang 已提交
66
  convArgs.sb_address = (void *)bs_ptr;
Z
zhangyang 已提交
67 68 69 70
  convArgs.kernel.stride_h = param->Strides()[0];
  convArgs.kernel.stride_w = param->Strides()[1];
  convArgs.kernel.height = filter->dims()[2];
  convArgs.kernel.width = filter->dims()[3];
Z
zhangyang 已提交
71
  convArgs.image.address = (void *)input_ptr;
Z
zhangyang 已提交
72 73 74 75 76 77
  convArgs.image.channels = input->dims()[1];
  convArgs.image.height = input->dims()[2];
  convArgs.image.width = input->dims()[3];
  convArgs.image.pad_height = param->Paddings()[0];
  convArgs.image.pad_width = param->Paddings()[1];
  convArgs.image.scale_address = input->fpga_args().scale_pointer();
Z
zhangyang 已提交
78
  convArgs.output.address = (void *)out_ptr;
Z
zhangyang 已提交
79 80 81 82 83 84
  convArgs.output.scale_address = out->fpga_args().scale_pointer();
  param->SetFpgaArgs(convArgs);
  return true;
}

template <>
Z
zhangyang 已提交
85 86
void ConvAddBNKernel<FPGA, float>::Compute(
    const FusionConvAddBNParam &param) const {
Z
zhangyang 已提交
87 88 89 90 91 92 93 94
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvAddBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif