conv_op.cc 8.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/operators/conv_op.h"
16
#include "lite/kernels/npu/bridges/graph.h"
Z
zhupengyang 已提交
17
#include "lite/kernels/npu/bridges/registry.h"
18
#include "lite/kernels/npu/bridges/utility.h"
Y
Yan Chunwei 已提交
19 20 21

namespace paddle {
namespace lite {
22
namespace subgraph {
Y
Yan Chunwei 已提交
23 24
namespace npu {

25 26 27 28 29
int ConvConverter(void* ctx, OpLite* op) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
Y
Yan Chunwei 已提交
30
  auto op_type = op_info->Type();
31 32
  auto scope = op->scope();
  VLOG(3) << "[NPU] Converting " << op_type << "... ";
Y
Yan Chunwei 已提交
33

34
  // Get input, filter and op attributes
Y
Yan Chunwei 已提交
35
  auto input_var_name = op_info->Input("Input").front();
36
  auto input = scope->FindVar(input_var_name)->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
37
  auto input_dims = input->dims();
38
  auto output_var_name = op_info->Output("Output").front();
39
  auto output = scope->FindVar(output_var_name)->GetMutable<Tensor>();
40
  auto output_dims = output->dims();
Y
Yan Chunwei 已提交
41
  auto filter_var_name = op_info->Input("Filter").front();
42
  auto filter = scope->FindVar(filter_var_name)->GetMutable<Tensor>();
Y
Yan Chunwei 已提交
43
  auto filter_dims = filter->dims();
44 45 46
  auto bs = input_dims[0];
  auto ic = input_dims[1];
  auto oc = filter_dims[0];
H
HappyAngel 已提交
47 48 49
  CHECK_EQ(input_dims.size(), 4L);
  CHECK_EQ(output_dims.size(), 4L);
  CHECK_EQ(filter_dims.size(), 4L);
50 51
  CHECK_EQ(output_dims[0], bs);
  CHECK_EQ(output_dims[1], oc);
Y
Yan Chunwei 已提交
52 53 54 55 56
  auto strides = op_info->GetAttr<std::vector<int>>("strides");
  auto paddings = op_info->GetAttr<std::vector<int>>("paddings");
  auto groups = op_info->GetAttr<int>("groups");
  auto dilations = op_info->GetAttr<std::vector<int>>("dilations");
  auto fuse_relu = op_info->GetAttr<bool>("fuse_relu");
H
HappyAngel 已提交
57 58 59
  CHECK_EQ(strides.size(), 2L);
  CHECK_EQ(dilations.size(), 2L);

60 61 62 63 64 65 66
  if (paddings.size() == 2L) {
    for (size_t i = 0; i < strides.size(); ++i) {
      int copy_pad = *(paddings.begin() + 2 * i);
      paddings.insert(paddings.begin() + 2 * i + 1, copy_pad);
    }
  }
  CHECK_EQ(paddings.size(), 4L)
67
      << "[NPU] Paddings size should be the same or twice as the input size.";
68 69 70 71

  std::string padding_algorithm("");
  if (op_info->HasAttr("padding_algorithm")) {
    padding_algorithm = op_info->GetAttr<std::string>("padding_algorithm");
H
HappyAngel 已提交
72
  }
73 74 75 76 77 78
  operators::UpdatePaddingAndDilation(&paddings,
                                      &dilations,
                                      strides,
                                      padding_algorithm,
                                      input_dims,
                                      filter_dims);
Y
Yan Chunwei 已提交
79

80
  // Check depthwise mode, and decide whether use ConvolutionDepthwise Op
Y
Yan Chunwei 已提交
81
  bool use_depthwise_conv =
82
      false;  // Whether use ge::op::ConvolutionDepthwise ?
83
  bool is_depthwise_mode = ic == groups && oc == groups;
Y
Yan Chunwei 已提交
84 85 86 87
  if (is_depthwise_mode &&
      !((groups == 1 || groups >= 5) && dilations[0] == 1 &&
        dilations[1] == 1)) {
    use_depthwise_conv = true;
88 89 90 91
    LOG(WARNING) << "[NPU] For depthwise mode, dilation = 1 and groups >= 5 "
                    "(or groups = 1) is only supported in Convolution Op, so "
                    "force to use ConvolutionDepthwise Op, but may lead poor "
                    "performance.";
Y
Yan Chunwei 已提交
92 93
  }

94 95
  // Create filter node
  auto filter_const_node = graph->AddNode(filter_var_name, *filter);
Y
Yan Chunwei 已提交
96

97 98
  // Create bias node if exists bias
  // Supports the bias nodes with the following dimensions
99 100 101 102 103
  // 0: {oc}
  // 1: {1, oc, oh, ow}
  // 2: {n, oc, oh, ow}
  std::shared_ptr<ge::Operator> bias_node = nullptr;
  bool is_channel_bias = false;
104
  if (HasInputArg(op_info, scope, "Bias")) {
Y
Yan Chunwei 已提交
105
    auto bias_var_name = op_info->Input("Bias").front();
106
    auto* bias = scope->FindVar(bias_var_name)->GetMutable<Tensor>();
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    auto bias_dims = bias->dims();
    auto bias_data_size = bias_dims.production();
    auto output_data_size = output_dims.production();
    std::vector<int64_t> bias_shape;
    if (bias_data_size == oc) {
      // 0: {oc}
      bias_shape = {1, oc, 1, 1};
      is_channel_bias = true;
    } else if (bias_data_size == output_data_size / bs) {
      // 1: {1, oc, oh, ow}
      bias_shape = {1, output_dims[1], output_dims[2], output_dims[3]};
    } else if (bias_data_size == output_data_size) {
      // 2: {n, oc, oh, ow}
      bias_shape = output_dims.Vectorize();
    } else {
122 123 124 125
      LOG(WARNING) << "[NPU] Bias dimension " << bias_dims
                   << " isn't supported in conv2d Op when output dimension is "
                   << output_dims;
      return FAILED;
126
    }
127 128 129
    if (graph->HasNode(bias_var_name)) {
      // Bias node from input map
      bias_node = graph->GetNode(bias_var_name);
130
    } else {
131 132
      // Bias node with const data
      bias_node = graph->AddNode(bias_var_name, *bias, bias_shape);
133
    }
Y
Yan Chunwei 已提交
134 135
  }

136
  // Create conv node and set input, filter, bias nodes and attributes
Y
Yan Chunwei 已提交
137 138 139
  std::shared_ptr<ge::Operator> conv_node = nullptr;
  if (use_depthwise_conv && is_depthwise_mode) {
    auto depthwise_conv_node =
140 141
        graph->AddNode<ge::op::ConvolutionDepthwise>(output_var_name);
    depthwise_conv_node->set_input_x(*graph->GetNode(input_var_name));
Y
Yan Chunwei 已提交
142 143 144 145 146 147 148
    depthwise_conv_node->set_input_filter(*filter_const_node);
    depthwise_conv_node->set_attr_mode(1);
    depthwise_conv_node->set_attr_algo(0);
    depthwise_conv_node->set_attr_format(0);    // NCHW
    depthwise_conv_node->set_attr_pad_mode(5);  // VALID
    depthwise_conv_node->set_attr_group(groups);
    depthwise_conv_node->set_attr_pad(ge::AttrValue::LIST_INT(
149
        {paddings[0], paddings[1], paddings[2], paddings[3]}));
Y
Yan Chunwei 已提交
150 151 152 153 154 155 156
    depthwise_conv_node->set_attr_dilation(
        ge::AttrValue::LIST_INT({dilations[0], dilations[1]}));
    depthwise_conv_node->set_attr_stride(
        ge::AttrValue::LIST_INT({strides[0], strides[1]}));
    depthwise_conv_node->set_attr_kernel(
        ge::AttrValue::LIST_INT({filter_dims[2], filter_dims[3]}));
    conv_node = depthwise_conv_node;
157 158 159
    // ConvolutionDepthwise Op doesn't support bias, so append Add node to
    // support bias
    if (bias_node != nullptr) {
160
      auto add_node = graph->AddNode<ge::op::Add>(output_var_name);
Y
Yan Chunwei 已提交
161
      add_node->set_input_x1(*depthwise_conv_node);
162
      add_node->set_input_x2(*bias_node);
Y
Yan Chunwei 已提交
163
      conv_node = add_node;
Y
Yan Chunwei 已提交
164 165 166
    }
  } else {
    auto common_conv_node =
167 168
        graph->AddNode<ge::op::Convolution>(output_var_name);
    common_conv_node->set_input_x(*graph->GetNode(input_var_name));
Y
Yan Chunwei 已提交
169 170 171 172 173
    common_conv_node->set_input_w(*filter_const_node);
    common_conv_node->set_attr_mode(1);
    common_conv_node->set_attr_pad_mode(0);  // NOTSET
    common_conv_node->set_attr_group(groups);
    common_conv_node->set_attr_pad(ge::AttrValue::LIST_INT(
H
HappyAngel 已提交
174
        {paddings[0], paddings[0], paddings[2], paddings[2]}));
Y
Yan Chunwei 已提交
175 176 177 178 179 180 181
    common_conv_node->set_attr_dilation(
        ge::AttrValue::LIST_INT({dilations[0], dilations[1]}));
    common_conv_node->set_attr_stride(
        ge::AttrValue::LIST_INT({strides[0], strides[1]}));
    common_conv_node->set_attr_kernel(
        ge::AttrValue::LIST_INT({filter_dims[2], filter_dims[3]}));
    conv_node = common_conv_node;
182 183 184 185 186 187
    // Convolution Op only support bias with dimension {1, oc, 1, 1},
    // so append Add node if dimension is {1, oc, oh, ow} or (n, oc, oh, ow)
    if (bias_node != nullptr) {
      if (is_channel_bias) {
        common_conv_node->set_input_b(*bias_node);
      } else {
188
        auto add_node = graph->AddNode<ge::op::Add>(output_var_name);
189 190 191 192 193
        add_node->set_input_x1(*common_conv_node);
        add_node->set_input_x2(*bias_node);
        conv_node = add_node;
      }
    }
Y
Yan Chunwei 已提交
194 195 196 197
  }
  CHECK(conv_node);

  if (fuse_relu) {
198 199
    // Append relu node if fuse_relu is true
    auto relu_node = graph->AddNode<ge::op::Activation>(output_var_name);
Y
Yan Chunwei 已提交
200
    relu_node->set_input_x(*conv_node);
201
    relu_node->set_attr_mode(CvtActMode("relu"));
Y
Yan Chunwei 已提交
202
  }
203
  return REBUILD_WHEN_SHAPE_CHANGED;
Y
Yan Chunwei 已提交
204 205 206
}

}  // namespace npu
207
}  // namespace subgraph
Y
Yan Chunwei 已提交
208 209 210
}  // namespace lite
}  // namespace paddle

211 212 213 214 215 216
REGISTER_SUBGRAPH_BRIDGE(NPU,
                         conv2d,
                         paddle::lite::subgraph::npu::ConvConverter);
REGISTER_SUBGRAPH_BRIDGE(NPU,
                         depthwise_conv2d,
                         paddle::lite::subgraph::npu::ConvConverter);