cxx_api.cc 10.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
16
#include <algorithm>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <set>
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26
#include <string>
#include <utility>
#include <vector>
#include "lite/utils/io.h"

namespace paddle {
namespace lite {

27 28 29 30 31 32 33
static const char TAILORD_OPS_SOURCE_LIST_FILENAME[] =
    ".tailored_ops_source_list";
static const char TAILORD_OPS_LIST_NAME[] = ".tailored_ops_list";
static const char TAILORD_KERNELS_SOURCE_LIST_FILENAME[] =
    ".tailored_kernels_source_list";
static const char TAILORD_KERNELS_LIST_NAME[] = ".tailored_kernels_list";

Y
Yan Chunwei 已提交
34
void Predictor::SaveModel(const std::string &dir,
35 36
                          lite_api::LiteModelType model_type,
                          bool record_info) {
Y
Yan Chunwei 已提交
37 38 39 40
  if (!program_) {
    GenRuntimeProgram();
  }
  program_->SaveOpInfosToProgram(&program_desc_);
41
  program_->UpdateVarsOfProgram(&program_desc_);
Y
Yan Chunwei 已提交
42 43
  switch (model_type) {
    case lite_api::LiteModelType::kProtobuf:
44
      SaveModelPb(dir, *program_->exec_scope(), program_desc_, true);
Y
Yan Chunwei 已提交
45 46 47 48 49 50 51
      break;
    case lite_api::LiteModelType::kNaiveBuffer:
      SaveModelNaive(dir, *program_->exec_scope(), program_desc_);
      break;
    default:
      LOG(FATAL) << "Unknown model type";
  }
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  if (record_info) {
    SaveOpKernelInfo(dir);
  }
}

void Predictor::SaveOpKernelInfo(const std::string &model_dir) {
  std::set<std::string> ops_info;
  std::set<std::string> kernels_info;
  const auto &instructions_ = program_->instructions();
  for (auto &node : instructions_) {
    // parse op type infomation
    auto op = node.op()->op_info();
    ops_info.insert(op->Type());
    // parse kernel type information
    std::string kernel_type_str =
        node.kernel()->op_type() + "," + TargetRepr(node.kernel()->target()) +
        "," + PrecisionRepr(node.kernel()->precision()) + "," +
        DataLayoutRepr(node.kernel()->layout()) + "," + node.kernel()->alias();
    kernels_info.insert(kernel_type_str);
  }

  // get souce_file name from op type and kernel type
  auto op2pathmap = OpKernelInfoCollector::Global().GetOp2PathDict();
  auto kernel2pathmap = OpKernelInfoCollector::Global().GetKernel2PathDict();

  // write used op and kernel info into files
  std::string opf_path = model_dir + "/" + TAILORD_OPS_LIST_NAME;
  std::string opf_source_path =
      model_dir + "/" + TAILORD_OPS_SOURCE_LIST_FILENAME;
  std::string kpf_path = model_dir + "/" + TAILORD_KERNELS_LIST_NAME;
  std::string kpf_source_path =
      model_dir + "/" + TAILORD_KERNELS_SOURCE_LIST_FILENAME;
  std::map<std::string, std::string> op2path;

  std::FILE *opf = std::fopen(opf_path.c_str(), "w");
  std::FILE *opf_source = std::fopen(opf_source_path.c_str(), "w");
  std::FILE *kpf = std::fopen(kpf_path.c_str(), "w");
  std::FILE *kpf_source = std::fopen(kpf_source_path.c_str(), "w");
  std::vector<std::string> opcompile;
  std::vector<std::string> kernelcompile;

  if (nullptr == opf || nullptr == opf_source || nullptr == opf ||
      nullptr == kpf_source) {
    LOG(FATAL) << "failed to create info file into: " << model_dir;
  }
  for (auto op_info = ops_info.begin(); op_info != ops_info.end(); op_info++) {
    fputs(op_info->c_str(), opf);
    fputc('\n', opf);
    std::string op_path = op2pathmap[*op_info];
    fputs(op_path.c_str(), opf_source);
    fputc('\n', opf_source);
  }
  std::fclose(opf_source);
  std::fclose(opf);
  LOG(INFO) << "operators information of tailored model is stored into: "
            << opf_path;

  // write Kernel_type and Kernel_path into file
  for (auto kernel_info = kernels_info.begin();
       kernel_info != kernels_info.end();
       kernel_info++) {
    fputs(kernel_info->c_str(), kpf);
    fputc('\n', kpf);
    std::string kernel_path = kernel2pathmap[*kernel_info];
    fputs(kernel_path.c_str(), kpf_source);
    fputc('\n', kpf_source);
    if (kernel_path == "conv_compute.cc") {
      fputs(
          "conv_depthwise.cc\nconv_direct.cc\nconv_gemmlike.cc\nconv_"
          "winograd.cc\n",
          kpf_source);
    }
  }
  std::fclose(kpf_source);
  std::fclose(kpf);
  LOG(INFO) << "kernels information of tailored model is stored into: "
            << kpf_path;
Y
Yan Chunwei 已提交
129 130 131
}

lite::Tensor *Predictor::GetInput(size_t offset) {
132 133 134 135 136 137 138
  CHECK(input_names_.size() > offset)
      << "The network has " << input_names_.size() << " inputs"
      << ", the offset should be less than this.";
  auto *in_var = exec_scope_->FindVar(input_names_[offset]);
  CHECK(in_var) << "no fatch variable " << input_names_[offset]
                << " in exec_scope";
  return in_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
139 140
}

141
// get inputs names
S
sangoly 已提交
142
std::vector<std::string> Predictor::GetInputNames() { return input_names_; }
143

144
// get outputnames
S
sangoly 已提交
145
std::vector<std::string> Predictor::GetOutputNames() { return output_names_; }
146

147 148
// append the names of inputs and outputs into input_names_ and output_names_
void Predictor::PrepareFeedFetch() {
149 150 151 152 153 154 155 156 157
  if (!program_) {
    GenRuntimeProgram();
  }
  std::vector<const cpp::OpDesc *> feeds;
  std::vector<const cpp::OpDesc *> fetchs;
  const auto &insts = program_->instructions();

  for (size_t i = 0; i < program_->num_instructions(); i++) {
    const auto &op = insts[i].op()->op_info();
158
    if (op->Type() == "feed") {
159
      feeds.push_back(op);
160
    } else if (op->Type() == "fetch") {
161
      fetchs.push_back(op);
162 163
    }
  }
164

165 166
  input_names_.resize(feeds.size());
  output_names_.resize(fetchs.size());
167
  for (size_t i = 0; i < feeds.size(); i++) {
168 169 170
    input_names_[feeds[i]->GetAttr<int>("col")] =
        feeds[i]->Output("Out").front();
  }
171
  for (size_t i = 0; i < fetchs.size(); i++) {
172 173 174
    output_names_[fetchs[i]->GetAttr<int>("col")] =
        fetchs[i]->Input("X").front();
  }
175 176
}

Y
Yan Chunwei 已提交
177
const lite::Tensor *Predictor::GetOutput(size_t offset) const {
178 179 180 181 182 183 184
  CHECK(output_names_.size() > offset)
      << "The network has " << output_names_.size() << " outputs"
      << ", the offset should be less than this.";
  const std::string name = output_names_.at(offset);
  auto *out_var = exec_scope_->FindVar(name);
  CHECK(out_var) << "no fatch variable " << name << " in exec_scope";
  return out_var->GetMutable<lite::Tensor>();
Y
Yan Chunwei 已提交
185 186
}

187 188 189 190 191 192 193 194
std::vector<const lite::Tensor *> Predictor::GetOutputs() const {
  std::vector<const lite::Tensor *> outputs;
  size_t out_size = output_names_.size();
  for (size_t i = 0; i < out_size; i++) {
    const std::string name = output_names_.at(i);
    outputs.push_back(GetTensor(name));
  }
  return outputs;
T
TianXiaogang 已提交
195 196
}

Y
Yan Chunwei 已提交
197 198 199
const cpp::ProgramDesc &Predictor::program_desc() const {
  return program_desc_;
}
200

Y
Yan Chunwei 已提交
201 202
const RuntimeProgram &Predictor::runtime_program() const { return *program_; }

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
void Predictor::Build(const lite_api::CxxConfig &config,
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes,
                      lite_api::LiteModelType model_type) {
  const std::string &model_path = config.model_dir();
  const std::string &model_file = config.model_file();
  const std::string &param_file = config.param_file();
  const bool model_from_memory = config.model_from_memory();
  LOG(INFO) << "load from memory " << model_from_memory;

  Build(model_path,
        model_file,
        param_file,
        valid_places,
        passes,
        model_type,
        model_from_memory);
}
Y
Yan Chunwei 已提交
221
void Predictor::Build(const std::string &model_path,
222 223
                      const std::string &model_file,
                      const std::string &param_file,
Y
Yan Chunwei 已提交
224 225
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes,
226 227
                      lite_api::LiteModelType model_type,
                      bool model_from_memory) {
Y
Yan Chunwei 已提交
228
  switch (model_type) {
229 230 231 232 233 234 235 236 237 238
    case lite_api::LiteModelType::kProtobuf: {
      bool combined_param = false;
      if (!model_file.empty() && !param_file.empty()) {
        combined_param = true;
      }
      LoadModelPb(model_path,
                  model_file,
                  param_file,
                  scope_.get(),
                  &program_desc_,
239 240
                  combined_param,
                  model_from_memory);
241
    } break;
Y
Yan Chunwei 已提交
242
    case lite_api::LiteModelType::kNaiveBuffer:
243 244
      CHECK(!model_path.empty())
          << "NaiveBuffer backend only supported combined param";
Y
Yan Chunwei 已提交
245 246 247 248 249
      LoadModelNaive(model_path, scope_.get(), &program_desc_);
      break;
    default:
      LOG(FATAL) << "Unknown model type";
  }
250
  Build(program_desc_, valid_places, passes);
Y
Yan Chunwei 已提交
251 252 253 254 255 256
}

void Predictor::Build(const cpp::ProgramDesc &desc,
                      const std::vector<Place> &valid_places,
                      const std::vector<std::string> &passes) {
  program_desc_ = desc;
257
  // `inner_places` is used to optimize passes
258 259 260 261 262
  std::vector<Place> inner_places = valid_places;
  inner_places.emplace_back(TARGET(kHost), PRECISION(kAny), DATALAYOUT(kAny));
  inner_places.emplace_back(
      TARGET(kHost), PRECISION(kFloat), DATALAYOUT(kNCHW));
  Program program(desc, scope_, inner_places);
263

Y
Yan Chunwei 已提交
264 265 266
  core::KernelPickFactor factor;
  factor.ConsiderTarget();
  factor.ConsiderPrecision();
267
  factor.ConsiderDataLayout();
268

269
  optimizer_.Run(std::move(program), inner_places, factor, passes);
Y
Yan Chunwei 已提交
270
  exec_scope_ = optimizer_.exec_scope();
271
  PrepareFeedFetch();
Y
Yan Chunwei 已提交
272 273 274 275 276 277 278 279 280 281 282 283
}

void Predictor::GenRuntimeProgram() {
  program_ = optimizer_.GenRuntimeProgram();
  CHECK_EQ(exec_scope_, program_->exec_scope());
  program_generated_ = true;
}

const lite::Tensor *Predictor::GetTensor(const std::string &name) const {
  auto *var = exec_scope_->FindVar(name);
  return &var->Get<lite::Tensor>();
}
284

285 286
// get input by name
lite::Tensor *Predictor::GetInputByName(const std::string &name) {
287 288
  auto element = std::find(input_names_.begin(), input_names_.end(), name);
  if (element == input_names_.end()) {
289 290
    LOG(ERROR) << "Model do not have input named with: [" << name
               << "], model's inputs include:";
291
    for (size_t i = 0; i < input_names_.size(); i++) {
292 293
      LOG(ERROR) << "[" << input_names_[i] << "]";
    }
294
    return nullptr;
295
  } else {
296 297
    int position = std::distance(input_names_.begin(), element);
    return GetInput(position);
298 299
  }
}
Y
Yan Chunwei 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313

#ifdef LITE_WITH_TRAIN
void Predictor::FeedVars(const std::vector<framework::Tensor> &tensors) {
  auto var = scope_->FindVar("feed");
  auto &feed_list = *(var->GetMutable<std::vector<lite::Tensor>>());
  feed_list.resize(tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i)
    feed_list[i].ShareDataWith(tensors[i]);
}
#endif

}  // namespace lite
}  // namespace paddle