cl_image.h 7.3 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include <vector>

#include "CL/cl.h"
L
liuruilong 已提交
20

21
#include "framework/cl/cl_half.h"
L
liuruilong 已提交
22
#include "framework/cl/cl_tool.h"
L
liuruilong 已提交
23 24 25 26 27 28 29 30
#include "framework/ddim.h"
#include "framework/tensor.h"

namespace paddle_mobile {
namespace framework {

class CLImage {
 public:
L
liuruilong 已提交
31 32
  CLImage() = default;

L
liuruilong 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
  /*
   * will not hold input tensor data, memcpy in this method
   * */
  void SetTensorData(float *tensorData, const DDim &dim) {
    int numel = product(dim);
    if (tensor_data_ != nullptr) {
      delete[](tensor_data_);
    }
    tensor_data_ = new float[numel];
    memcpy(tensor_data_, tensorData, numel);
    tensor_dims_ = dim;
  }

  /*
   * need call SetTensorData first
   * */
L
liuruilong 已提交
49
  void InitCLImage(cl_context context, cl_command_queue command_queue) {
L
liuruilong 已提交
50 51 52
    if (tensor_data_ == nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(" need call SetTensorData first");
    }
D
dolphin8 已提交
53
    if (tensor_dims_.size() <= 2) {
L
liuruilong 已提交
54
      InitCLImage2C(context, command_queue, tensor_data_, tensor_dims_);
D
dolphin8 已提交
55
    } else {
L
liuruilong 已提交
56
      InitCLImage(context, command_queue, tensor_data_, tensor_dims_);
D
dolphin8 已提交
57
    }
L
liuruilong 已提交
58 59 60 61 62
    delete[](tensor_data_);
    tensor_data_ = nullptr;
    initialized_ = true;
  }

L
liuruilong 已提交
63 64
  void InitEmptyImage(cl_context context, cl_command_queue command_queue,
                      const DDim &dim) {
L
liuruilong 已提交
65 66 67 68
    if (tensor_data_ != nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(
          " empty image tensor data shouldn't have value");
    }
L
liuruilong 已提交
69
    DLOG << " init empty image ";
L
liuruilong 已提交
70
    InitCLImage(context, command_queue, nullptr, dim);
L
liuruilong 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    initialized_ = true;
  }

  cl_mem GetCLImage() const { return cl_image_; }

  const DDim &ImageDims() { return image_dims_; }

  inline size_t ImageWidth() const { return image_width_; }

  inline size_t ImageHeight() const { return image_height_; }

  /*
   * block of channels, 4 channel one block
   * */
  inline size_t CBlock() const { return c_block_; }

  /*
   *  width of original tensor
   * */
  inline size_t WidthOfOneBlock() const { return width_of_one_block_; }

  /*
   *  height of original tensor
   * */
  inline size_t HeightOfOneBlock() const { return height_of_one_block_; }

L
liuruilong 已提交
97
  inline cl_command_queue CommandQueue() const { return command_queue_; }
Y
yangfei 已提交
98

L
liuruilong 已提交
99 100 101 102 103 104 105 106 107 108 109 110
  /*
   *  resize original tensor dim
   * */
  inline CLImage &Resize(const DDim &dims) {
    tensor_dims_ = dims;
    return *this;
  }

  template <typename T>
  T *data() const {
    if (initialized_) {
      PADDLE_MOBILE_THROW_EXCEPTION(
L
liuruilong 已提交
111 112
          " cl image has initialized, tensor data has been deleted, can't use "
          "tensor data");
L
liuruilong 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    }
    return reinterpret_cast<T *>(tensor_data_);
  }

  /*
   *  numel of tensor dim
   * */
  inline int64_t numel() const { return product(tensor_dims_); }

  /*
   *  original tensor dim
   * */
  const DDim &dims() const { return tensor_dims_; }

 private:
L
liuruilong 已提交
128 129
  void InitCLImage2C(cl_context context, cl_command_queue command_queue,
                     float *tensor_data, const DDim &dim) {
Y
yangfei 已提交
130
    command_queue_ = command_queue;
D
dolphin8 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    assert(dim.size() <= 2);
    int tdim[2] = {1, 1};
    if (dim.size() == 1) {
      tdim[1] = dim[0];
    } else {
      tdim[0] = dim[0];
      tdim[1] = dim[1];
    }
    int width = tdim[1] + 3 / 4;
    int height = tdim[0];
    std::unique_ptr<half_t[]> imageData{};
    if (tensor_data) {
      imageData.reset(new half_t[width * height * 4]);
      for (int h = 0; h < tdim[0]; h++) {
        for (int w = 0; w < tdim[1]; w++) {
L
liuruilong 已提交
146 147
          imageData[(h * width + w / 4) * 4 + (w % 4)] =
              Float2Half(tensor_data[h * tdim[1] + w]);
D
dolphin8 已提交
148 149 150 151 152 153
        }
      }
    }
    InitCLImage(context, width, height, imageData.get());
  }

L
liuruilong 已提交
154
  void InitCLImage(cl_context context, int width, int height, void *data) {
D
dolphin8 已提交
155 156 157
    cl_image_format cf = {.image_channel_order = CL_RGBA,
                          .image_channel_data_type = CL_HALF_FLOAT};
    cl_image_desc cid = {
L
liuruilong 已提交
158 159 160 161 162 163 164 165 166 167
        .image_type = CL_MEM_OBJECT_IMAGE2D,
        .image_width = width,
        .image_height = height,
        .image_depth = 1,
        .image_array_size = 1,
        .image_row_pitch = 0,
        .image_slice_pitch = 0,
        .num_mip_levels = 0,
        .num_samples = 0,
        // .buffer = nullptr
D
dolphin8 已提交
168 169 170 171
    };
    cid.buffer = nullptr;
    cl_int err;
    cl_image_ = clCreateImage(
L
liuruilong 已提交
172 173 174 175 176
        context, CL_MEM_READ_WRITE | (data ? CL_MEM_COPY_HOST_PTR : 0),
        &cf,   // const cl_image_format *image_format
        &cid,  // const cl_image_desc *image_desc
        data,  // void *host_ptr
        &err);
D
dolphin8 已提交
177 178 179 180 181
    if (err != CL_SUCCESS) {
      CL_CHECK_ERRORS(err);
      PADDLE_MOBILE_THROW_EXCEPTION(" create image 2d error ");
    }
  }
L
liuruilong 已提交
182 183
  void InitCLImage(cl_context context, cl_command_queue command_queue,
                   float *tensor_data, const DDim &dim) {
L
liuruilong 已提交
184
    DLOG << " tensor dim: " << dim;
D
dolphin8 已提交
185
    // NCHW -> [W * (C+3)/4, H * N]
Y
yangfei 已提交
186
    tensor_dims_ = dim;
Y
yangfei 已提交
187
    command_queue_ = command_queue;
Y
yangfei 已提交
188 189 190
    if (tensor_data) {
      tensor_data_ = tensor_data;
    }
L
liuruilong 已提交
191
    size_t new_dims[] = {1, 1, 1, 1};
L
liuruilong 已提交
192

L
liuruilong 已提交
193 194
    for (int j = 0; j < dim.size(); ++j) {
      new_dims[4 - dim.size() + j] = dim[j];
Y
yangfei 已提交
195 196
    }

L
liuruilong 已提交
197 198 199 200 201 202 203 204 205 206
    size_t N, C, H, W;

    N = new_dims[0];
    C = new_dims[1];
    H = new_dims[2];
    W = new_dims[3];

    width_of_one_block_ = W;
    height_of_one_block_ = H;

D
dolphin8 已提交
207 208
    size_t width = W * ((C + 3) / 4);
    size_t height = H * N;
L
liuruilong 已提交
209 210 211

    image_width_ = width;
    image_height_ = height;
L
liuruilong 已提交
212
    image_dims_ = make_ddim({image_width_, image_height_});
L
liuruilong 已提交
213
    c_block_ = W / width;
L
liuruilong 已提交
214

D
dolphin8 已提交
215
    std::unique_ptr<half_t[]> imageData{};
216
    int count = 0;
L
liuruilong 已提交
217
    if (tensor_data != nullptr) {
D
dolphin8 已提交
218
      imageData.reset(new half_t[width * height * 4]);
L
liuruilong 已提交
219
      float *p = tensor_data;
220 221 222
      size_t i0 = 0;
      for (int n = 0; n < N; n++) {
        for (int c = 0; c < C; c++) {
D
dolphin8 已提交
223
          size_t i1 = i0 + (c / 4) * W;
224 225 226
          for (int h = 0; h < H; h++) {
            size_t i2 = (i1 << 2) + c % 4;
            for (int w = 0; w < W; w++) {
D
dolphin8 已提交
227
              // int x = (n * width * H + h * width + (c / 4) * W + w) * 4 + (c % 4);
L
liuruilong 已提交
228
              imageData[i2] = Float2Half(*p);
229 230 231 232 233 234 235 236
              i2 += 4;
              p++;
            }
            i1 += width;
          }
        }
        i0 += width * H;
      }
D
dolphin8 已提交
237
    }
D
dolphin8 已提交
238
    InitCLImage(context, width, height, imageData.get());
L
liuruilong 已提交
239 240
  }

L
liuruilong 已提交
241
  bool initialized_ = false;
L
liuruilong 已提交
242
  cl_mem cl_image_;
L
liuruilong 已提交
243 244 245 246 247
  size_t image_width_;
  size_t width_of_one_block_;
  size_t height_of_one_block_;
  size_t image_height_;
  size_t c_block_;
248
  DDim tensor_dims_;
L
liuruilong 已提交
249 250
  DDim image_dims_;
  float *tensor_data_;
L
liuruilong 已提交
251
  cl_context context_;
Y
yangfei 已提交
252
  cl_command_queue command_queue_;
L
liuruilong 已提交
253 254
};

L
liuruilong 已提交
255 256
void TensorToCLImage(Tensor *tensor, CLImage *image,
                     cl_command_queue commandQueue);
Y
yangfei 已提交
257

L
liuruilong 已提交
258 259
void CLImageToTensor(CLImage *image, Tensor *tensor,
                     cl_command_queue commandQueue);
L
liuruilong 已提交
260

L
liuruilong 已提交
261 262 263 264
#ifdef PADDLE_MOBILE_DEBUG
Print &operator<<(Print &printer, const CLImage &image);
#endif

265 266
}  // namespace framework
}  // namespace paddle_mobile