cl_image.h 6.0 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19 20
#include <vector>

#include "CL/cl.h"
#include "framework/cl/cl_half.h"
L
liuruilong 已提交
21 22 23 24 25 26 27 28
#include "framework/ddim.h"
#include "framework/tensor.h"

namespace paddle_mobile {
namespace framework {

class CLImage {
 public:
L
liuruilong 已提交
29 30
  CLImage() = default;

L
liuruilong 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
  /*
   * will not hold input tensor data, memcpy in this method
   * */
  void SetTensorData(float *tensorData, const DDim &dim) {
    int numel = product(dim);
    if (tensor_data_ != nullptr) {
      delete[](tensor_data_);
    }
    tensor_data_ = new float[numel];
    memcpy(tensor_data_, tensorData, numel);
    tensor_dims_ = dim;
  }

  /*
   * need call SetTensorData first
   * */
  void InitCLImage(cl_context context) {
    if (tensor_data_ == nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(" need call SetTensorData first");
    }
    InitCLImage(context, tensor_data_, tensor_dims_);
    delete[](tensor_data_);
    tensor_data_ = nullptr;
    initialized_ = true;
  }

  void InitEmptyImage(cl_context context, const DDim &dim) {
    if (tensor_data_ != nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(
          " empty image tensor data shouldn't have value");
    }
    InitCLImage(context, nullptr, dim);
    initialized_ = true;
  }

  cl_mem GetCLImage() const { return cl_image_; }

  const DDim &ImageDims() { return image_dims_; }

  inline size_t ImageWidth() const { return image_width_; }

  inline size_t ImageHeight() const { return image_height_; }

  /*
   * block of channels, 4 channel one block
   * */
  inline size_t CBlock() const { return c_block_; }

  /*
   *  width of original tensor
   * */
  inline size_t WidthOfOneBlock() const { return width_of_one_block_; }

  /*
   *  height of original tensor
   * */
  inline size_t HeightOfOneBlock() const { return height_of_one_block_; }

  /*
   *  resize original tensor dim
   * */
  inline CLImage &Resize(const DDim &dims) {
    tensor_dims_ = dims;
    return *this;
  }

  template <typename T>
  T *data() const {
    if (initialized_) {
      PADDLE_MOBILE_THROW_EXCEPTION(
          " cl image has initialized, tensor data has been deleted ");
    }
    return reinterpret_cast<T *>(tensor_data_);
  }

  /*
   *  numel of tensor dim
   * */
  inline int64_t numel() const { return product(tensor_dims_); }

  /*
   *  original tensor dim
   * */
  const DDim &dims() const { return tensor_dims_; }

 private:
  void InitCLImage(cl_context context, float *tensor_data, const DDim &dim) {
118 119
    cl_image_format cf = {.image_channel_order = CL_RGBA,
                          .image_channel_data_type = CL_HALF_FLOAT};
D
dolphin8 已提交
120
    // NCHW -> [W * (C+3)/4, H * N]
Y
yangfei 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134
    tensor_dims_ = dim;
    if (tensor_data) {
      tensor_data_ = tensor_data;
    } else {
      int numel = 1;
      for (int i = 0; i < dim.size(); i++) {
        numel *= dim[i];
      }
      tensor_data_ = static_cast<float *>(
          paddle_mobile::memory::Alloc(sizeof(float) * numel));
      for (int i = 0; i < numel; i++) {
        tensor_data_[i] = 0;
      }
    }
135 136 137 138
    size_t N, C, H, W;
    if (tensor_dims_.size() == 4) {
      N = tensor_dims_[0];
      if (N < 0) {
Y
yangfei 已提交
139
        N = 1;
140 141 142 143
      }
      C = tensor_dims_[1];
      H = tensor_dims_[2];
      W = tensor_dims_[3];
L
liuruilong 已提交
144 145 146 147

      width_of_one_block_ = W;
      height_of_one_block_ = H;

148 149 150 151 152
    } else if (tensor_dims_.size() == 1) {
      N = 1;
      C = tensor_dims_[0];
      H = 1;
      W = 1;
L
liuruilong 已提交
153 154 155

      width_of_one_block_ = W;
      height_of_one_block_ = H;
Y
yangfei 已提交
156 157
    }

D
dolphin8 已提交
158 159
    size_t width = W * ((C + 3) / 4);
    size_t height = H * N;
L
liuruilong 已提交
160 161 162

    image_width_ = width;
    image_height_ = height;
L
liuruilong 已提交
163
    image_dims_ = make_ddim({image_width_, image_height_});
L
liuruilong 已提交
164

D
dolphin8 已提交
165
    std::unique_ptr<half_t[]> imageData{};
166
    int count = 0;
L
liuruilong 已提交
167
    if (tensor_data != nullptr) {
D
dolphin8 已提交
168
      imageData.reset(new half_t[width * height * 4]);
L
liuruilong 已提交
169
      float *p = tensor_data;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
      size_t i0 = 0;
      for (int n = 0; n < N; n++) {
        for (int c = 0; c < C; c++) {
          size_t i1 = i0;
          for (int h = 0; h < H; h++) {
            size_t i2 = (i1 << 2) + c % 4;
            for (int w = 0; w < W; w++) {
              if (i2 >= width * height * 4) {
                printf("%d > %d ----> %d, %d, %d, %d --- %d, %d, %d\n", i2,
                       width * height * 4, n, c, h, w, i0, i1, i2);
              }
              assert(i2 < width * height * 4);

              imageData[i2] = float2half(*p);
              i2 += 4;
              p++;
              //              count++;
              //              DLOG<<count;
            }
            i1 += width;
          }
        }
        i0 += width * H;
      }
D
dolphin8 已提交
194 195 196
    }
    cl_int err;
    cl_image_ = clCreateImage2D(
197 198 199 200 201 202 203 204
        context,                                   // cl_context context
        CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,  // cl_mem_flags flags
        &cf,     // const cl_image_format *image_format
        width,   // size_t image_width
        height,  // size_t image_height
        0,       // size_t image_row_pitch
        reinterpret_cast<void *>(imageData.get()),  // void *host_ptr
        &err);
L
liuruilong 已提交
205

D
dolphin8 已提交
206
    if (err != CL_SUCCESS) {
207
      // TODO(HaiPeng): error handling
L
liuruilong 已提交
208
      PADDLE_MOBILE_THROW_EXCEPTION(" create image 2d error ");
D
dolphin8 已提交
209
    }
L
liuruilong 已提交
210 211
  }

L
liuruilong 已提交
212
  bool initialized_ = false;
L
liuruilong 已提交
213
  cl_mem cl_image_;
L
liuruilong 已提交
214 215 216 217 218
  size_t image_width_;
  size_t width_of_one_block_;
  size_t height_of_one_block_;
  size_t image_height_;
  size_t c_block_;
219
  DDim tensor_dims_;
L
liuruilong 已提交
220 221
  DDim image_dims_;
  float *tensor_data_;
L
liuruilong 已提交
222 223 224
  cl_context context_;
};

Y
yangfei 已提交
225 226 227
void TensorToCLImage(Tensor *tensor, CLImage *image);

void CLImageToTensor(CLImage *image, Tensor *tensor);
L
liuruilong 已提交
228

229 230
}  // namespace framework
}  // namespace paddle_mobile