test_multiclass_nms_op.cpp 6.7 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "../test_include.h"
#include "operators/multiclass_nms_op.h"

namespace paddle_mobile {
namespace framework {

template <typename Dtype>
class TestMultiClassNMSOp {
 public:
  explicit TestMultiClassNMSOp(const Program<Dtype> p) : program_(p) {
    if (use_optimize_) {
      to_predict_program_ = program_.optimizeProgram;
    } else {
      to_predict_program_ = program_.originProgram;
    }

    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        to_predict_program_->Blocks();
    //  DLOG << " **block size " << blocks.size();
    for (auto block_desc : blocks) {
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      //    DLOG << " ops " << ops.size();
      for (auto op : ops) {
        if (op->Type() == "multiclass_nms" &&
            op->Input("BBoxes")[0] == "box_coder_0.tmp_0") {
          DLOG << " mul attr size: " << op->GetAttrMap().size();
          DLOG << " inputs size: " << op->GetInputs().size();
          DLOG << " outputs size: " << op->GetOutputs().size();
          DLOG << " BBoxes is : " << op->Input("BBoxes")[0];
          DLOG << " Scores is : " << op->Input("Scores")[0];
          DLOG << " Out is : " << op->Output("Out")[0];
          DLOG << " keep_top_k : "
               << op->GetAttrMap().at("keep_top_k").Get<int>();
          DLOG << " background_label : "
               << op->GetAttrMap().at("background_label").Get<int>();
          DLOG << " nms_eta : " << op->GetAttrMap().at("nms_eta").Get<float>();
          DLOG << " nms_threshold : "
               << op->GetAttrMap().at("nms_threshold").Get<float>();
          DLOG << " nms_top_k : "
               << op->GetAttrMap().at("nms_top_k").Get<int>();
          DLOG << " score_threshold : "
               << op->GetAttrMap().at("score_threshold").Get<float>();
          //                            DLOG << " variances : " <<
          //                            op->GetAttrMap().at("variances").Get<std::vector<float>>();
          //                            DLOG << " aspect_ratios : " <<
          //                            op->GetAttrMap().at("aspect_ratios").Get<std::vector<float>>();
          //                            DLOG << " min_sizes : " <<
          //                            op->GetAttrMap().at("min_sizes").Get<std::vector<float>>();
          //                            DLOG << " max_sizes : " <<
          //                            op->GetAttrMap().at("max_sizes").Get<std::vector<float>>();
          std::shared_ptr<operators::MultiClassNMSOp<Dtype, float>> priorbox =
              std::make_shared<operators::MultiClassNMSOp<Dtype, float>>(
                  op->Type(), op->GetInputs(), op->GetOutputs(),
                  op->GetAttrMap(), program_.scope);
          ops_of_block_[*block_desc.get()].push_back(priorbox);
        }
      }
    }
  }

  std::shared_ptr<Tensor> predict(const Tensor &t1, const Tensor &t2) {
    // feed
    auto scope = program_.scope;
    Variable *x1_feed_value = scope->Var("box_coder_0.tmp_0");
E
eclipsess 已提交
80
    auto tensor_x1 = x1_feed_value->GetMutable<LoDTensor>();
E
eclipsess 已提交
81 82 83
    tensor_x1->ShareDataWith(t1);

    Variable *x2_feed_value = scope->Var("transpose_12.tmp_0");
E
eclipsess 已提交
84
    auto tensor_x2 = x2_feed_value->GetMutable<LoDTensor>();
E
eclipsess 已提交
85 86 87
    tensor_x2->ShareDataWith(t2);

    Variable *output = scope->Var("detection_output_0.tmp_0");
E
eclipsess 已提交
88
    auto *output_tensor = output->GetMutable<LoDTensor>();
E
eclipsess 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    output_tensor->mutable_data<float>({1917, 6});

    //  DLOG << typeid(output_tensor).name();
    //  DLOG << "output_tensor dims: " << output_tensor->dims();

    std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
    out_tensor.reset(output_tensor);

    predict(t1, t2, 0);

    return out_tensor;
    // return outvars_tensor;
  }

 private:
  const framework::Program<Dtype> program_;
  std::shared_ptr<ProgramDesc> to_predict_program_;
  std::map<framework::BlockDesc,
           std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
      ops_of_block_;
  bool use_optimize_ = false;

  void predict(const Tensor &t1, const Tensor &t2, int block_id) {
    std::shared_ptr<BlockDesc> to_predict_block =
        to_predict_program_->Block(block_id);
    for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
      auto op = ops_of_block_[*to_predict_block.get()][j];
      DLOG << "op -> run()";
      op->Run();
    }
  }
};

template class TestMultiClassNMSOp<CPU>;
}  // namespace framework
}  // namespace paddle_mobile

int main() {
  DLOG << "----------**********----------";
  DLOG << "begin to run MulticlassNMS Test";
  paddle_mobile::Loader<paddle_mobile::CPU> loader;
L
lijiancheng0614 已提交
130
  auto program = loader.Load(std::string(g_mobilenet_ssd));
E
eclipsess 已提交
131 132

  paddle_mobile::framework::Tensor inputx1;
L
lijiancheng0614 已提交
133
  SetupTensor<float>(&inputx1, {1, 2, 4}, static_cast<float>(0),
E
eclipsess 已提交
134 135
                     static_cast<float>(1));
  auto *inputx1_ptr = inputx1.data<float>();
L
lijiancheng0614 已提交
136 137 138 139
  const float x1[] = {0, 0, 100, 100, 50, 50, 150, 150};
  for (int i = 0; i < 8; ++i) {
    *(inputx1_ptr + i) = x1[i];
  }
E
eclipsess 已提交
140 141

  paddle_mobile::framework::Tensor inputx2;
L
lijiancheng0614 已提交
142
  SetupTensor<float>(&inputx2, {1, 2, 2}, static_cast<float>(0),
E
eclipsess 已提交
143 144
                     static_cast<float>(1));
  auto *inputx2_ptr = inputx2.data<float>();
L
lijiancheng0614 已提交
145 146 147 148
  const float x2[] = {0.4, 0.3, 0.6, 0.7};
  for (int i = 0; i < 4; ++i) {
    *(inputx2_ptr + i) = x2[i];
  }
E
eclipsess 已提交
149 150 151 152 153 154 155

  paddle_mobile::framework::TestMultiClassNMSOp<paddle_mobile::CPU>
      testMultiClassNMSOp(program);

  auto output = testMultiClassNMSOp.predict(inputx1, inputx2);
  auto *output_ptr = output->data<float>();

L
lijiancheng0614 已提交
156
  for (int i = 0; i < output->numel(); ++i) {
E
eclipsess 已提交
157 158
    DLOG << output_ptr[i];
  }
L
lijiancheng0614 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

  // test multi point
  paddle_mobile::framework::Tensor inputx3;
  SetupTensor<float>(&inputx3, {1, 2, 8}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputx3_ptr = inputx3.data<float>();
  const float x3[] = {0,  0,  100, 0,  100, 100, 0,  100,
                      50, 50, 150, 50, 150, 150, 50, 150};
  for (int i = 0; i < 16; ++i) {
    *(inputx3_ptr + i) = x3[i];
  }

  auto output2 = testMultiClassNMSOp.predict(inputx3, inputx2);
  auto *output_ptr2 = output2->data<float>();

  for (int i = 0; i < output2->numel(); ++i) {
    DLOG << output_ptr2[i];
  }
E
eclipsess 已提交
177 178
  return 0;
}