program.cc 7.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/core/program.h"
16
#include <unordered_map>
Y
Yan Chunwei 已提交
17 18 19
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/cpp/op_desc.h"
#include "lite/model_parser/cpp/var_desc.h"
J
juncaipeng 已提交
20
#include "lite/operators/conditional_block_op.h"
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
#include "lite/operators/while_op.h"
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/precision_profiler.h"
#endif

namespace paddle {
namespace lite {

void RuntimeProgram::SaveOpInfosToProgram(cpp::ProgramDesc* desc) {
  CHECK(desc);
  // NOTE: RuntimeProgram do not has all meta info, so save model just update
  // upon origin model
  CHECK(desc->BlocksSize());
  auto& main_block = *desc->GetBlock<cpp::BlockDesc>(0);
  main_block.ClearOps();
  for (auto& node : instructions_) {
    auto* op = main_block.AddOp<cpp::OpDesc>();
    *op = *node.op()->op_info();
    op->SetAttr(kKernelTypeAttr, node.kernel()->SerializedKernelType());
  }
}

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
// `UpdateVarsOfProgram` will remove unused var_descs and add new created
// vars' descs in the block 0. Now, the type of a new created var can only
// be LOD_TENSOR.
void RuntimeProgram::UpdateVarsOfProgram(cpp::ProgramDesc* desc) {
  CHECK(desc);
  CHECK(desc->BlocksSize());
  std::unordered_map<std::string, cpp::VarDesc> origin_var_maps;
  auto& main_block = *desc->GetBlock<cpp::BlockDesc>(0);
  auto var_size = main_block.VarsSize();
  for (int i = 0; i < var_size; i++) {
    auto v = main_block.GetVar<cpp::VarDesc>(i);
    auto name = v->Name();
    origin_var_maps.emplace(name, *v);
  }

  main_block.ClearVars();
  for (auto& node : instructions_) {
    auto* op = const_cast<lite::OpLite*>(node.op());
    auto* kernel = node.kernel();
    auto* scope = op->scope();
    auto in_names = op->op_info()->input_names();
    auto out_names = op->op_info()->output_names();
    for (auto& in_name : in_names) {
      auto it = origin_var_maps.find(in_name);
      if (it != origin_var_maps.end()) {
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName((it->second).Name());
        v->SetType((it->second).GetType());
        v->SetPersistable((it->second).Persistable());
      } else {
        // New created vars must be LOD_TENSOR
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName(in_name);
        v->SetType(cpp::VarDesc::Type::LOD_TENSOR);
        std::string in_arg_name;
        op->op_info()->GetInputArgname(in_name, &in_arg_name);
        auto type = kernel->GetInputDeclType(in_arg_name);
        if (type->IsTensor()) {
          auto tensor = scope->FindVar(in_name)->GetMutable<Tensor>();
          v->SetPersistable(tensor->persistable());
        } else {
          CHECK(false) << "unsupported var type";
        }
      }
    }

    for (auto& out_name : out_names) {
      auto it = origin_var_maps.find(out_name);
      if (it != origin_var_maps.end()) {
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName((it->second).Name());
        v->SetType((it->second).GetType());
        v->SetPersistable((it->second).Persistable());
      } else {
        // New created vars must be LOD_TENSOR
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName(out_name);
        v->SetType(cpp::VarDesc::Type::LOD_TENSOR);
        std::string out_arg_name;
        op->op_info()->GetOutputArgname(out_name, &out_arg_name);
        auto type = kernel->GetOutputDeclType(out_arg_name);
        if (type->IsTensor()) {
          auto tensor = scope->FindVar(out_name)->GetMutable<Tensor>();
          v->SetPersistable(tensor->persistable());
        } else {
          CHECK(false) << "unsupported var type";
        }
      }
    }
  }
}

Y
Yan Chunwei 已提交
115 116
void RuntimeProgram::Run() {
  for (auto& inst : instructions_) {
117 118
    std::string op_type = inst.op()->op_info()->Type();
    if (op_type == "feed" || op_type == "fetch") continue;
Y
Yan Chunwei 已提交
119 120
    inst.Run();
#ifdef LITE_WITH_PROFILE
121
#ifdef LITE_WITH_PRECISION_PROFILE
Y
Yan Chunwei 已提交
122
    LITE_PRECISION_PROFILE(inst)
123 124
#endif  // LITE_WITH_PRECISION_PROFILE
#endif  // LITE_WITH_PROFILE
Y
Yan Chunwei 已提交
125
  }
126 127 128
#ifdef LITE_WITH_PROFILE
  LOG(INFO) << "\n" << profiler_.Summary();
#endif  // LITE_WITH_PROFILE
Y
Yan Chunwei 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
}

void Program::Build(const cpp::ProgramDesc& prog) {
  CHECK(ops_.empty()) << "Executor duplicate Build found";

  // Create operators.
  auto program = prog;
  CHECK(program.BlocksSize());
  auto& main_block = *program.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block.OpsSize(); ++i) {
    auto& op_desc = *main_block.GetOp<cpp::OpDesc>(i);
    auto op_type = op_desc.Type();
    // if (op_type == "feed" || op_type == "fetch") continue;
    VLOG(4) << "create Op [" << op_type << "]";
    auto op = LiteOpRegistry::Global().Create(op_type);
    CHECK(op) << "no Op found for " << op_type;
J
juncaipeng 已提交
145
    if (op_type == "while" || op_type == "conditional_block") {
146
      auto sub_block_idx = op_desc.GetAttr<int32_t>("sub_block");
Y
Yan Chunwei 已提交
147 148 149
      auto sub_block =
          const_cast<cpp::ProgramDesc&>(prog).GetBlock<cpp::BlockDesc>(
              sub_block_idx);
J
juncaipeng 已提交
150 151 152 153 154 155
      if (op_type == "while") {
        static_cast<operators::WhileOpLite*>(op.get())->SetSubBlock(sub_block);
      } else if (op_type == "conditional_block") {
        static_cast<operators::ConditionalBlockOpLite*>(op.get())->SetSubBlock(
            sub_block);
      }
Y
Yan Chunwei 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    }
    ops_.emplace_back(std::move(op));
    ops_.back()->Attach(op_desc, exec_scope_);
  }
}

void Program::PrepareWorkspace(const cpp::ProgramDesc& prog) {
  CHECK(!exec_scope_) << "Duplicate PrepareWorkspace found";
  exec_scope_ = &scope_->NewScope();
  // Create Feed and Fetch var.
  scope_->Var("feed")->GetMutable<std::vector<lite::Tensor>>();
  scope_->Var("fetch")->GetMutable<std::vector<lite::Tensor>>();
  tmp_vars_.push_back("feed");
  tmp_vars_.push_back("fetch");

  auto program = prog;
  CHECK(program.BlocksSize());
  for (size_t b = 0; b < program.BlocksSize(); ++b) {
    auto& main_block = *program.GetBlock<cpp::BlockDesc>(b);
    for (size_t i = 0; i < main_block.VarsSize(); ++i) {
      auto& var_desc = *main_block.GetVar<cpp::VarDesc>(i);
      if (!var_desc.Persistable()) {
        tmp_vars_.push_back(var_desc.Name());
        exec_scope_->Var(var_desc.Name());
        if (b > 0) {
          VLOG(4) << "var: " << var_desc.Name();
        }
      } else {
        if (var_desc.Name() == "feed" || var_desc.Name() == "fetch") continue;
        weights_.push_back(var_desc.Name());
        if (var_desc.Persistable()) scope_->Var(var_desc.Name());
      }
    }
  }
}

void Instruction::Run() {
  CHECK(op_) << "op null";
  CHECK(kernel_) << "kernel null";
  if (first_epoch_) {
    first_epoch_ = false;
    CHECK(op_->CheckShape());
  }

200 201 202
  if (op_->run_once() && has_run_) {
    return;
  }
Y
Yuan Shuai 已提交
203
#ifndef LITE_SHUTDOWN_LOG
Y
Yan Chunwei 已提交
204
  VLOG(4) << "kernel launch";
Y
Yuan Shuai 已提交
205
#endif
Y
Yan Chunwei 已提交
206
  op_->InferShape();
Y
Yuan Shuai 已提交
207
#ifndef LITE_SHUTDOWN_LOG
208 209
  VLOG(4) << ">> Running kernel: " << op_->op_info()->Repr() << " on Target "
          << TargetToStr(kernel_->target());
Y
Yuan Shuai 已提交
210
#endif
Y
Yan Chunwei 已提交
211 212 213 214 215 216 217 218 219 220 221
  kernel_->Launch();
  has_run_ = true;
}

STL::ostream& operator<<(STL::ostream& os, const Instruction& other) {
  os << other.kernel_->summary() << "\t(" << other.kernel_->doc() << ")";
  return os;
}

}  // namespace lite
}  // namespace paddle