program.cc 7.1 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/core/program.h"
16
#include <unordered_map>
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/cpp/op_desc.h"
#include "lite/model_parser/cpp/var_desc.h"
#include "lite/operators/while_op.h"
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/precision_profiler.h"
#endif

namespace paddle {
namespace lite {

void RuntimeProgram::SaveOpInfosToProgram(cpp::ProgramDesc* desc) {
  CHECK(desc);
  // NOTE: RuntimeProgram do not has all meta info, so save model just update
  // upon origin model
  CHECK(desc->BlocksSize());
  auto& main_block = *desc->GetBlock<cpp::BlockDesc>(0);
  main_block.ClearOps();
  for (auto& node : instructions_) {
    auto* op = main_block.AddOp<cpp::OpDesc>();
    *op = *node.op()->op_info();
    op->SetAttr(kKernelTypeAttr, node.kernel()->SerializedKernelType());
  }
}

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
// `UpdateVarsOfProgram` will remove unused var_descs and add new created
// vars' descs in the block 0. Now, the type of a new created var can only
// be LOD_TENSOR.
void RuntimeProgram::UpdateVarsOfProgram(cpp::ProgramDesc* desc) {
  CHECK(desc);
  CHECK(desc->BlocksSize());
  std::unordered_map<std::string, cpp::VarDesc> origin_var_maps;
  auto& main_block = *desc->GetBlock<cpp::BlockDesc>(0);
  auto var_size = main_block.VarsSize();
  for (int i = 0; i < var_size; i++) {
    auto v = main_block.GetVar<cpp::VarDesc>(i);
    auto name = v->Name();
    origin_var_maps.emplace(name, *v);
  }

  main_block.ClearVars();
  for (auto& node : instructions_) {
    auto* op = const_cast<lite::OpLite*>(node.op());
    auto* kernel = node.kernel();
    auto* scope = op->scope();
    auto in_names = op->op_info()->input_names();
    auto out_names = op->op_info()->output_names();
    for (auto& in_name : in_names) {
      auto it = origin_var_maps.find(in_name);
      if (it != origin_var_maps.end()) {
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName((it->second).Name());
        v->SetType((it->second).GetType());
        v->SetPersistable((it->second).Persistable());
      } else {
        // New created vars must be LOD_TENSOR
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName(in_name);
        v->SetType(cpp::VarDesc::Type::LOD_TENSOR);
        std::string in_arg_name;
        op->op_info()->GetInputArgname(in_name, &in_arg_name);
        auto type = kernel->GetInputDeclType(in_arg_name);
        if (type->IsTensor()) {
          auto tensor = scope->FindVar(in_name)->GetMutable<Tensor>();
          v->SetPersistable(tensor->persistable());
        } else {
          CHECK(false) << "unsupported var type";
        }
      }
    }

    for (auto& out_name : out_names) {
      auto it = origin_var_maps.find(out_name);
      if (it != origin_var_maps.end()) {
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName((it->second).Name());
        v->SetType((it->second).GetType());
        v->SetPersistable((it->second).Persistable());
      } else {
        // New created vars must be LOD_TENSOR
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName(out_name);
        v->SetType(cpp::VarDesc::Type::LOD_TENSOR);
        std::string out_arg_name;
        op->op_info()->GetOutputArgname(out_name, &out_arg_name);
        auto type = kernel->GetOutputDeclType(out_arg_name);
        if (type->IsTensor()) {
          auto tensor = scope->FindVar(out_name)->GetMutable<Tensor>();
          v->SetPersistable(tensor->persistable());
        } else {
          CHECK(false) << "unsupported var type";
        }
      }
    }
  }
}

Y
Yan Chunwei 已提交
114 115 116 117 118 119 120
void RuntimeProgram::Run() {
  for (auto& inst : instructions_) {
    VLOG(4) << ">> Running kernel: " << inst.op()->op_info()->Repr()
            << " on Target " << TargetToStr(inst.kernel()->target());

    inst.Run();
#ifdef LITE_WITH_PROFILE
121
#ifdef LITE_WITH_PRECISION_PROFILE
Y
Yan Chunwei 已提交
122
    LITE_PRECISION_PROFILE(inst)
123 124
#endif  // LITE_WITH_PRECISION_PROFILE
#endif  // LITE_WITH_PROFILE
Y
Yan Chunwei 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
  }
}

void Program::Build(const cpp::ProgramDesc& prog) {
  CHECK(ops_.empty()) << "Executor duplicate Build found";

  // Create operators.
  auto program = prog;
  CHECK(program.BlocksSize());
  auto& main_block = *program.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block.OpsSize(); ++i) {
    auto& op_desc = *main_block.GetOp<cpp::OpDesc>(i);
    auto op_type = op_desc.Type();
    // if (op_type == "feed" || op_type == "fetch") continue;
    VLOG(4) << "create Op [" << op_type << "]";
    auto op = LiteOpRegistry::Global().Create(op_type);
    CHECK(op) << "no Op found for " << op_type;
    if (op_type == "while") {
      auto sub_block_idx = op_desc.GetAttr<int16_t>("sub_block");
      auto sub_block =
          const_cast<cpp::ProgramDesc&>(prog).GetBlock<cpp::BlockDesc>(
              sub_block_idx);
      static_cast<operators::WhileOpLite*>(op.get())->SetSubBlock(sub_block);
    }
    ops_.emplace_back(std::move(op));
    ops_.back()->Attach(op_desc, exec_scope_);
  }
}

void Program::PrepareWorkspace(const cpp::ProgramDesc& prog) {
  CHECK(!exec_scope_) << "Duplicate PrepareWorkspace found";
  exec_scope_ = &scope_->NewScope();
  // Create Feed and Fetch var.
  scope_->Var("feed")->GetMutable<std::vector<lite::Tensor>>();
  scope_->Var("fetch")->GetMutable<std::vector<lite::Tensor>>();
  tmp_vars_.push_back("feed");
  tmp_vars_.push_back("fetch");

  auto program = prog;
  CHECK(program.BlocksSize());
  for (size_t b = 0; b < program.BlocksSize(); ++b) {
    auto& main_block = *program.GetBlock<cpp::BlockDesc>(b);
    for (size_t i = 0; i < main_block.VarsSize(); ++i) {
      auto& var_desc = *main_block.GetVar<cpp::VarDesc>(i);
      if (!var_desc.Persistable()) {
        tmp_vars_.push_back(var_desc.Name());
        exec_scope_->Var(var_desc.Name());
        if (b > 0) {
          VLOG(4) << "var: " << var_desc.Name();
        }
      } else {
        if (var_desc.Name() == "feed" || var_desc.Name() == "fetch") continue;
        weights_.push_back(var_desc.Name());
        if (var_desc.Persistable()) scope_->Var(var_desc.Name());
      }
    }
  }
}

void Instruction::Run() {
#ifdef LITE_WITH_PROFILE
  profile::ProfileBlock x(profile_id_);
#endif  // LITE_WITH_PROFILE
  CHECK(op_) << "op null";
  CHECK(kernel_) << "kernel null";
  if (first_epoch_) {
    first_epoch_ = false;
    CHECK(op_->CheckShape());
  }

  if (op_->run_once() && has_run_) return;
  VLOG(4) << "kernel launch";
  op_->InferShape();
  kernel_->Launch();
  has_run_ = true;
}

STL::ostream& operator<<(STL::ostream& os, const Instruction& other) {
  os << other.kernel_->summary() << "\t(" << other.kernel_->doc() << ")";
  return os;
}

}  // namespace lite
}  // namespace paddle