quantize_kernel.cpp 31.4 KB
Newer Older
T
Tian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef QUANT_OP
16

17
#include "operators/kernel/quantize_kernel.h"
18
#include <cmath>
T
Tian 已提交
19

20 21
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
H
Refine  
hjchen2 已提交
22

23
#ifndef __aarch64__
H
hjchen2 已提交
24
inline float32_t vmaxvq_f32(float32x4_t r) {
25 26 27 28 29
  float32x2_t v = vmax_f32(vget_high_f32(r), vget_low_f32(r));
  return vget_lane_f32(vpmax_f32(v, v), 0);
}
#endif

H
hjchen2 已提交
30
inline int32x4_t vrnd_towards_zero(float32x4_t r) { return vcvtq_s32_f32(r); }
31

H
hjchen2 已提交
32
inline int32x4_t vrnd_away_zero(float32x4_t r) {
33
  float32x4_t plus = vdupq_n_f32(0.5);
34
  float32x4_t minus = vdupq_n_f32(-0.5);
35
  float32x4_t zero = vdupq_n_f32(0);
H
Refine  
hjchen2 已提交
36
  uint32x4_t more_than_zero = vcgtq_f32(r, zero);
37
  float32x4_t temp = vbslq_f32(more_than_zero, plus, minus);
H
Refine  
hjchen2 已提交
38
  temp = vaddq_f32(r, temp);
39 40 41 42
  int32x4_t ret = vcvtq_s32_f32(temp);
  return ret;
}

H
hjchen2 已提交
43
inline int32x4_t vrnd_to_even(float32x4_t r) {
H
Refine  
hjchen2 已提交
44
#if 0
45
  int32x4_t ret;
H
Refine  
hjchen2 已提交
46 47
  float value[4];
  vst1q_f32(value, r);
48
  for (int i = 0; i < 4; ++i) {
H
Refine  
hjchen2 已提交
49
    float v = round(value[i]);
50
    int32_t q = (int32_t)v;
H
Refine  
hjchen2 已提交
51
    if (abs(abs(v - value[i]) - 0.5) > 0) {
52 53 54 55 56
      ret[i] = q;
    } else {
      if (abs(q) % 2 == 0) {
        ret[i] = q;
      } else {
H
hjchen2 已提交
57
        ret[i] = q + ((q > 0) ? -1 : 1);
58 59 60 61
      }
    }
  }
  return ret;
62
#else
H
Refine  
hjchen2 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  float32x4_t point5 = vdupq_n_f32(0.5);
  int32x4_t one = vdupq_n_s32(1);
  int32x4_t zero = vdupq_n_s32(0);

  int32x4_t rnd = vrnd_away_zero(r);
  float32x4_t frnd = vcvtq_f32_s32(rnd);
  frnd = vsubq_f32(frnd, r);
  frnd = vabsq_f32(frnd);
  uint32x4_t equal_point5 = vceqq_f32(frnd, point5);
  int32x4_t abs_rnd = vabsq_s32(rnd);
  abs_rnd = vandq_s32(abs_rnd, one);
  uint32x4_t not_mod2 = vreinterpretq_u32_s32(abs_rnd);
  uint32x4_t mask = vandq_u32(equal_point5, not_mod2);
  uint32x4_t more_than_zero = vcgtq_s32(rnd, zero);
  more_than_zero = vandq_u32(more_than_zero, vreinterpretq_u32_s32(one));
  mask = veorq_u32(more_than_zero, mask);
  more_than_zero = veorq_u32(more_than_zero, vreinterpretq_u32_s32(one));
  mask = vaddq_u32(more_than_zero, mask);
  int32x4_t smask = vreinterpretq_s32_u32(mask);
  smask = vsubq_s32(smask, one);
83
  rnd = vaddq_s32(rnd, smask);
H
Refine  
hjchen2 已提交
84
  return rnd;
85
#endif
86 87
}

88 89 90
namespace paddle_mobile {
namespace operators {

91
static float find_abs_max(const Tensor *input) {
92
  float max_abs = 0.f;
93
  const float *x = input->data<const float>();
94 95 96 97 98 99
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t max;
H
Refine  
hjchen2 已提交
100 101 102 103 104
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vabsq_f32(r0);
105 106 107
    r1 = vabsq_f32(r1);
    r2 = vabsq_f32(r2);
    r3 = vabsq_f32(r3);
H
Refine  
hjchen2 已提交
108 109 110 111
    max[0] = vmaxvq_f32(r0);
    max[1] = vmaxvq_f32(r1);
    max[2] = vmaxvq_f32(r2);
    max[3] = vmaxvq_f32(r3);
112 113 114 115 116 117 118 119 120
    max[0] = vmaxvq_f32(max);
    if (max[0] > max_abs) {
      max_abs = max[0];
    }
    x += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
121 122 123 124 125 126 127 128
    float value = std::abs(x[i]);
    if (value > max_abs) {
      max_abs = value;
    }
  }
  return max_abs;
}

H
hjchen2 已提交
129
#ifdef __aarch64__
130
static void quantize_round_to_even(const Tensor *input, const float scale,
131 132
                                   const std::vector<int> &paddings,
                                   const int8_t padding_val, Tensor *output) {
133
  const float *x = input->data<const float>();
H
hjchen2 已提交
134
  int8_t *y = output->mutable_data<int8_t>();
135 136 137 138
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
H
hjchen2 已提交
139 140

  #pragma omp parallel for
141
  for (size_t i = 0; i < loop; ++i) {
H
hjchen2 已提交
142 143 144 145 146 147
    const float *local_x = x + (i << 4);
    int8_t *local_y = y + (i << 4);
    float32x4_t r0 = vld1q_f32(local_x);
    float32x4_t r1 = vld1q_f32(local_x + 4);
    float32x4_t r2 = vld1q_f32(local_x + 8);
    float32x4_t r3 = vld1q_f32(local_x + 12);
148 149 150 151 152 153 154 155 156 157 158 159
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_to_even(r0);
    int32x4_t q1 = vrnd_to_even(r1);
    int32x4_t q2 = vrnd_to_even(r2);
    int32x4_t q3 = vrnd_to_even(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
H
hjchen2 已提交
160 161
    int16x8_t q5 = vcombine_s16(d0, d1);
    int16x8_t q6 = vcombine_s16(d2, d3);
H
Refine  
hjchen2 已提交
162 163
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
H
hjchen2 已提交
164 165
    vst1_s8(local_y, d5);
    vst1_s8(local_y + 8, d6);
166 167
  }
  size = remain;
H
hjchen2 已提交
168 169
  x += (loop << 4);
  y += (loop << 4);
170 171
#endif
  for (size_t i = 0; i < size; ++i) {
172
    float value = x[i] * scale;
H
Refine  
hjchen2 已提交
173 174 175 176
    float v = round(value);
    int32_t q = (int32_t)v;
    if (abs(abs(q - value) - 0.5) > 0) {
      y[i] = q;
177
    } else {
H
Refine  
hjchen2 已提交
178 179
      if (abs(q) % 2 == 0) {
        y[i] = q;
180
      } else {
H
hjchen2 已提交
181
        y[i] = q + ((q > 0) ? -1 : 1);
182 183 184 185 186
      }
    }
  }
}

187
static void quantize_round_to_zero(const Tensor *input, const float scale,
188 189
                                   const std::vector<int> &paddings,
                                   const int8_t padding_val, Tensor *output) {
190
  const float *x = input->data<const float>();
H
hjchen2 已提交
191
  int8_t *y = output->mutable_data<int8_t>();
192
  size_t size = input->numel();
H
hjchen2 已提交
193
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
194 195
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
H
hjchen2 已提交
196 197

  #pragma omp parallel for
198
  for (size_t i = 0; i < loop; ++i) {
H
hjchen2 已提交
199 200 201 202 203 204
    const float *local_x = x + (i << 4);
    int8_t *local_y = y + (i << 4);
    float32x4_t r0 = vld1q_f32(local_x);
    float32x4_t r1 = vld1q_f32(local_x + 4);
    float32x4_t r2 = vld1q_f32(local_x + 8);
    float32x4_t r3 = vld1q_f32(local_x + 12);
205 206 207 208 209 210 211 212 213 214 215 216
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_towards_zero(r0);
    int32x4_t q1 = vrnd_towards_zero(r1);
    int32x4_t q2 = vrnd_towards_zero(r2);
    int32x4_t q3 = vrnd_towards_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
H
hjchen2 已提交
217 218
    int16x8_t q5 = vcombine_s16(d0, d1);
    int16x8_t q6 = vcombine_s16(d2, d3);
H
Refine  
hjchen2 已提交
219 220
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
H
hjchen2 已提交
221 222
    vst1_s8(local_y, d5);
    vst1_s8(local_y + 8, d6);
223 224
  }
  size = remain;
H
hjchen2 已提交
225 226
  x += (loop << 4);
  y += (loop << 4);
227 228
#endif
  for (size_t i = 0; i < size; ++i) {
H
hjchen2 已提交
229
    y[i] = static_cast<int8_t>(x[i] * scale);
230 231 232
  }
}

233
static void quantize_round_to_nearest(const Tensor *input, const float scale,
234 235
                                      const std::vector<int> &paddings,
                                      const int8_t padding_val,
236
                                      Tensor *output) {
237
  const float *x = input->data<const float>();
H
hjchen2 已提交
238
  int8_t *y = output->mutable_data<int8_t>();
239
  size_t size = input->numel();
240
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
241 242
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
H
hjchen2 已提交
243 244

  #pragma omp parallel for
245
  for (size_t i = 0; i < loop; ++i) {
H
hjchen2 已提交
246 247 248 249 250 251
    const float *local_x = x + (i << 4);
    int8_t *local_y = y + (i << 4);
    float32x4_t r0 = vld1q_f32(local_x);
    float32x4_t r1 = vld1q_f32(local_x + 4);
    float32x4_t r2 = vld1q_f32(local_x + 8);
    float32x4_t r3 = vld1q_f32(local_x + 12);
252 253 254 255 256 257 258 259 260 261 262 263
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_away_zero(r0);
    int32x4_t q1 = vrnd_away_zero(r1);
    int32x4_t q2 = vrnd_away_zero(r2);
    int32x4_t q3 = vrnd_away_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
H
hjchen2 已提交
264 265
    int16x8_t q5 = vcombine_s16(d0, d1);
    int16x8_t q6 = vcombine_s16(d2, d3);
H
Refine  
hjchen2 已提交
266 267
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
H
hjchen2 已提交
268 269
    vst1_s8(local_y, d5);
    vst1_s8(local_y + 8, d6);
270 271
  }
  size = remain;
H
hjchen2 已提交
272 273
  x += (loop << 4);
  y += (loop << 4);
274 275
#endif
  for (size_t i = 0; i < size; ++i) {
H
hjchen2 已提交
276
    y[i] = round(x[i] * scale);
277 278
  }
}
279
#else   // __aarch64__
H
hjchen2 已提交
280 281 282 283 284 285 286 287 288

static void quantize_round_to_even(const Tensor *input, const float scale,
                                   const std::vector<int> &paddings,
                                   const int8_t padding_val, Tensor *output) {}

static void quantize_round_to_nearest(const Tensor *input, const float scale,
                                      const std::vector<int> &paddings,
                                      const int8_t padding_val,
                                      Tensor *output) {}
289

H
hjchen2 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static void quantize_round_to_zero(const Tensor *input, const float scale,
                                   const std::vector<int> &paddings,
                                   const int8_t padding_val, Tensor *output) {
  int channels = input->dims()[1];
  int input_h = input->dims()[2];
  int input_w = input->dims()[3];
  int output_h = output->dims()[2];
  int output_w = output->dims()[3];
  int input_spatial_size = input_h * input_w;
  int output_spatial_size = output_h * output_w;
  const float *x = input->data<float>();
  int8_t *y = output->mutable_data<int8_t>();
  // valid area start
  int start = paddings[0] * output_w + paddings[1];

  for (int batch = 0; batch < input->dims()[0]; ++batch) {
306
    #pragma omp parallel for
H
hjchen2 已提交
307
    for (int c = 0; c < channels - 3; c += 4) {
H
hjchen2 已提交
308 309 310 311 312
      const float *input0 = x + (batch * channels + c) * input_spatial_size;
      const float *input1 = input0 + input_spatial_size;
      const float *input2 = input1 + input_spatial_size;
      const float *input3 = input2 + input_spatial_size;
      size_t offset = (batch * channels + c) * output_spatial_size;
H
hjchen2 已提交
313 314 315 316 317 318 319
      for (int h = 0; h < 2; ++h) {
        int8_t *y0 =
            y + offset + h * ((input_h + paddings[0]) * output_w - paddings[1]);
        int8_t *y1 = y0 + output_spatial_size;
        int8_t *y2 = y1 + output_spatial_size;
        int8_t *y3 = y2 + output_spatial_size;
        int loop = start >> 4;
H
hjchen2 已提交
320
        int remain = start & 0xF;
H
hjchen2 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
        asm volatile(
            "vdup.s8    q0,     %[val]      \n"
            "cmp        %[loop], #0         \n"
            "ble        start_remain_%=     \n"

            "store_16w_%=:                  \n"
            "vst1.32    {q0}, [%[y0]]!      \n"
            "vst1.32    {q0}, [%[y1]]!      \n"
            "vst1.32    {q0}, [%[y2]]!      \n"
            "vst1.32    {q0}, [%[y3]]!      \n"
            "subs       %[loop], #1         \n"
            "bne        store_16w_%=        \n"

            "start_remain_%=:               \n"
            "cmp        %[remain], #8       \n"
            "blt        store_4w_%=         \n"
            "vst1.32    {d0}, [%[y0]]!      \n"
            "vst1.32    {d0}, [%[y1]]!      \n"
            "vst1.32    {d0}, [%[y2]]!      \n"
            "vst1.32    {d0}, [%[y3]]!      \n"
            "sub        %[remain], #8       \n"

            "store_4w_%=:                   \n"
            "cmp        %[remain], #4       \n"
            "blt        store_2w_%=         \n"
            "vst1.32    {d0[0]}, [%[y0]]!   \n"
            "vst1.32    {d0[0]}, [%[y1]]!   \n"
            "vst1.32    {d0[0]}, [%[y2]]!   \n"
            "vst1.32    {d0[0]}, [%[y3]]!   \n"
            "sub        %[remain], #4       \n"

            "store_2w_%=:                   \n"
            "cmp        %[remain], #4       \n"
            "blt        store_1w_%=         \n"
            "vst1.16    {d0[0]}, [%[y0]]!   \n"
            "vst1.16    {d0[0]}, [%[y1]]!   \n"
            "vst1.16    {d0[0]}, [%[y2]]!   \n"
            "vst1.16    {d0[0]}, [%[y3]]!   \n"
            "sub        %[remain], #2       \n"

            "store_1w_%=:                   \n"
            "cmp        %[remain], #1       \n"
            "blt        end_%=              \n"
            "vst1.8     {d0[0]}, [%[y0]]!   \n"
            "vst1.8     {d0[0]}, [%[y1]]!   \n"
            "vst1.8     {d0[0]}, [%[y2]]!   \n"
            "vst1.8     {d0[0]}, [%[y3]]!   \n"
            "end_%=:                        \n"
            : [y0] "+r"(y0), [y1] "+r"(y1), [y2] "+r"(y2), [y3] "+r"(y3),
              [loop] "+r"(loop), [remain] "+r"(remain)
            : [val] "r"(padding_val)
            : "cc", "memory", "q0");
      }
      // quantize valid area
      int8_t *y0 = y + offset + start;
      int8_t *y1 = y0 + output_spatial_size;
      int8_t *y2 = y1 + output_spatial_size;
      int8_t *y3 = y2 + output_spatial_size;
      for (int h = 0; h < input_h; ++h) {
H
hjchen2 已提交
380 381 382 383
        const float *x0 = input0 + h * input_w;
        const float *x1 = input1 + h * input_w;
        const float *x2 = input2 + h * input_w;
        const float *x3 = input3 + h * input_w;
H
hjchen2 已提交
384
        int loop = input_w >> 4;
H
hjchen2 已提交
385
        int remain = input_w & 0xF;
H
hjchen2 已提交
386 387
        int pad_loop = paddings[1] >> 1;  // (paddings[1] << 1) >> 2
        int pad_remain = (paddings[1] << 1) & 0x3;
H
hjchen2 已提交
388
        int remain_steps = remain;
H
hjchen2 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
        asm volatile(
            "vdup.f32   q0, %[scale]        \n"
            "cmp        %[loop], #0         \n"
            "ble        quantize_remain_%=  \n"

            "loop_quantize_%=:              \n"
            "vld1.32    {q1, q2}, [%[x0]]!  \n"
            "vld1.32    {q3, q4}, [%[x1]]!  \n"
            "vld1.32    {q5, q6}, [%[x2]]!  \n"
            "vld1.32    {q7, q8}, [%[x3]]!  \n"
            "vmul.f32  q1, q1, q0           \n"
            "vmul.f32  q2, q2, q0           \n"
            "vmul.f32  q3, q3, q0           \n"
            "vmul.f32  q4, q4, q0           \n"
            "vmul.f32  q5, q5, q0           \n"
            "vmul.f32  q6, q6, q0           \n"
            "vmul.f32  q7, q7, q0           \n"
            "vmul.f32  q8, q8, q0           \n"
            "vcvt.s32.f32  q1, q1           \n"
            "vcvt.s32.f32  q2, q2           \n"
            "vcvt.s32.f32  q3, q3           \n"
            "vcvt.s32.f32  q4, q4           \n"
            "vcvt.s32.f32  q5, q5           \n"
            "vcvt.s32.f32  q6, q6           \n"
            "vcvt.s32.f32  q7, q7           \n"
            "vcvt.s32.f32  q8, q8           \n"
            "vmovn.s32  d2, q1              \n"
            "vmovn.s32  d3, q2              \n"
            "vmovn.s32  d4, q3              \n"
            "vmovn.s32  d5, q4              \n"
            "vmovn.s32  d6, q5              \n"
            "vmovn.s32  d7, q6              \n"
            "vmovn.s32  d8, q7              \n"
            "vmovn.s32  d9, q8              \n"
            "vmovn.s16  d18, q1             \n"
            "vmovn.s16  d20, q2             \n"
            "vmovn.s16  d22, q3             \n"
            "vmovn.s16  d24, q4             \n"
            "vld1.32    {q1, q2}, [%[x0]]!  \n"
            "vld1.32    {q3, q4}, [%[x1]]!  \n"
            "vld1.32    {q5, q6}, [%[x2]]!  \n"
            "vld1.32    {q7, q8}, [%[x3]]!  \n"
            "vmul.f32  q1, q1, q0           \n"
            "vmul.f32  q2, q2, q0           \n"
            "vmul.f32  q3, q3, q0           \n"
            "vmul.f32  q4, q4, q0           \n"
            "vmul.f32  q5, q5, q0           \n"
            "vmul.f32  q6, q6, q0           \n"
            "vmul.f32  q7, q7, q0           \n"
            "vmul.f32  q8, q8, q0           \n"
            "vcvt.s32.f32  q1, q1           \n"
            "vcvt.s32.f32  q2, q2           \n"
            "vcvt.s32.f32  q3, q3           \n"
            "vcvt.s32.f32  q4, q4           \n"
            "vcvt.s32.f32  q5, q5           \n"
            "vcvt.s32.f32  q6, q6           \n"
            "vcvt.s32.f32  q7, q7           \n"
            "vcvt.s32.f32  q8, q8           \n"
            "vmovn.s32  d2, q1              \n"
            "vmovn.s32  d3, q2              \n"
            "vmovn.s32  d4, q3              \n"
            "vmovn.s32  d5, q4              \n"
            "vmovn.s32  d6, q5              \n"
            "vmovn.s32  d7, q6              \n"
            "vmovn.s32  d8, q7              \n"
            "vmovn.s32  d9, q8              \n"
            "vmovn.s16  d19, q1             \n"
            "vmovn.s16  d21, q2             \n"
            "vmovn.s16  d23, q3             \n"
            "vmovn.s16  d25, q4             \n"
H
hjchen2 已提交
459 460 461 462
            "vst1.32    {q9}, [%[y0]]!      \n"
            "vst1.32    {q10}, [%[y1]]!     \n"
            "vst1.32    {q11}, [%[y2]]!     \n"
            "vst1.32    {q12}, [%[y3]]!     \n"
H
hjchen2 已提交
463 464 465 466 467 468 469 470

            "subs       %[loop], #1         \n"
            "bne        loop_quantize_%=    \n"

            "quantize_remain_%=:            \n"
            "cmp        %[remain], #0       \n"
            "ble        end_%=              \n"

H
hjchen2 已提交
471 472 473 474
            "vld1.32    {q1, q2}, [%[x0]]!  \n"
            "vld1.32    {q3, q4}, [%[x1]]!  \n"
            "vld1.32    {q5, q6}, [%[x2]]!  \n"
            "vld1.32    {q7, q8}, [%[x3]]!  \n"
H
hjchen2 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
            "vmul.f32  q1, q1, q0           \n"
            "vmul.f32  q2, q2, q0           \n"
            "vmul.f32  q3, q3, q0           \n"
            "vmul.f32  q4, q4, q0           \n"
            "vmul.f32  q5, q5, q0           \n"
            "vmul.f32  q6, q6, q0           \n"
            "vmul.f32  q7, q7, q0           \n"
            "vmul.f32  q8, q8, q0           \n"
            "vcvt.s32.f32  q1, q1           \n"
            "vcvt.s32.f32  q2, q2           \n"
            "vcvt.s32.f32  q3, q3           \n"
            "vcvt.s32.f32  q4, q4           \n"
            "vcvt.s32.f32  q5, q5           \n"
            "vcvt.s32.f32  q6, q6           \n"
            "vcvt.s32.f32  q7, q7           \n"
            "vcvt.s32.f32  q8, q8           \n"
            "vmovn.s32  d2, q1              \n"
            "vmovn.s32  d3, q2              \n"
            "vmovn.s32  d4, q3              \n"
            "vmovn.s32  d5, q4              \n"
            "vmovn.s32  d6, q5              \n"
            "vmovn.s32  d7, q6              \n"
            "vmovn.s32  d8, q7              \n"
            "vmovn.s32  d9, q8              \n"
            "vmovn.s16  d18, q1             \n"
            "vmovn.s16  d20, q2             \n"
            "vmovn.s16  d22, q3             \n"
            "vmovn.s16  d24, q4             \n"
H
hjchen2 已提交
503 504 505 506
            "vld1.32    {q1, q2}, [%[x0]]   \n"
            "vld1.32    {q3, q4}, [%[x1]]   \n"
            "vld1.32    {q5, q6}, [%[x2]]   \n"
            "vld1.32    {q7, q8}, [%[x3]]   \n"
H
hjchen2 已提交
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
            "vmul.f32  q1, q1, q0           \n"
            "vmul.f32  q2, q2, q0           \n"
            "vmul.f32  q3, q3, q0           \n"
            "vmul.f32  q4, q4, q0           \n"
            "vmul.f32  q5, q5, q0           \n"
            "vmul.f32  q6, q6, q0           \n"
            "vmul.f32  q7, q7, q0           \n"
            "vmul.f32  q8, q8, q0           \n"
            "vcvt.s32.f32  q1, q1           \n"
            "vcvt.s32.f32  q2, q2           \n"
            "vcvt.s32.f32  q3, q3           \n"
            "vcvt.s32.f32  q4, q4           \n"
            "vcvt.s32.f32  q5, q5           \n"
            "vcvt.s32.f32  q6, q6           \n"
            "vcvt.s32.f32  q7, q7           \n"
            "vcvt.s32.f32  q8, q8           \n"
            "vmovn.s32  d2, q1              \n"
            "vmovn.s32  d3, q2              \n"
            "vmovn.s32  d4, q3              \n"
            "vmovn.s32  d5, q4              \n"
            "vmovn.s32  d6, q5              \n"
            "vmovn.s32  d7, q6              \n"
            "vmovn.s32  d8, q7              \n"
            "vmovn.s32  d9, q8              \n"
            "vmovn.s16  d19, q1             \n"
            "vmovn.s16  d21, q2             \n"
            "vmovn.s16  d23, q3             \n"
            "vmovn.s16  d25, q4             \n"

            "cmp        %[remain], #8       \n"
            "blt        store_4w_%=         \n"
            "vst1.32    {d18}, [%[y0]]!     \n"
            "vst1.32    {d20}, [%[y1]]!     \n"
            "vst1.32    {d22}, [%[y2]]!     \n"
            "vst1.32    {d24}, [%[y3]]!     \n"
            "vmov.32    d18, d19            \n"
            "vmov.32    d20, d21            \n"
            "vmov.32    d22, d23            \n"
            "vmov.32    d24, d25            \n"
            "sub        %[remain], #8       \n"

            "store_4w_%=:                   \n"
            "cmp        %[remain], #4       \n"
            "blt        store_2w_%=         \n"
            "vst1.32    {d18[0]}, [%[y0]]!  \n"
            "vst1.32    {d20[0]}, [%[y1]]!  \n"
            "vst1.32    {d22[0]}, [%[y2]]!  \n"
            "vst1.32    {d24[0]}, [%[y3]]!  \n"
            "vext.32    d18, d18, d18, #1   \n"
            "vext.32    d20, d20, d20, #1   \n"
            "vext.32    d22, d22, d22, #1   \n"
            "vext.32    d24, d24, d24, #1   \n"
            "sub        %[remain], #4       \n"

            "store_2w_%=:                   \n"
            "cmp        %[remain], #2       \n"
            "blt        store_1w_%=         \n"
            "vst1.16    {d18[0]}, [%[y0]]!  \n"
            "vst1.16    {d20[0]}, [%[y1]]!  \n"
            "vst1.16    {d22[0]}, [%[y2]]!  \n"
            "vst1.16    {d24[0]}, [%[y3]]!  \n"
            "vext.16    d18, d18, d18, #1   \n"
            "vext.16    d20, d20, d20, #1   \n"
            "vext.16    d22, d22, d22, #1   \n"
            "vext.16    d24, d24, d24, #1   \n"
            "sub        %[remain], #2       \n"

            "store_1w_%=:"
            "cmp        %[remain], #1       \n"
            "blt        end_%=              \n"
            "vst1.8     {d18[0]}, [%[y0]]!  \n"
            "vst1.8     {d20[0]}, [%[y1]]!  \n"
            "vst1.8     {d22[0]}, [%[y2]]!  \n"
            "vst1.8     {d24[0]}, [%[y3]]!  \n"

            "end_%=:                        \n"
            : [x0] "+r"(x0), [x1] "+r"(x1), [x2] "+r"(x2), [x3] "+r"(x3),
              [y0] "+r"(y0), [y1] "+r"(y1), [y2] "+r"(y2), [y3] "+r"(y3),
              [loop] "+r"(loop), [remain] "+r"(remain)
            : [scale] "r"(scale)
H
hjchen2 已提交
587 588
            : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
              "q8", "q9", "q10", "q11", "q12");
H
hjchen2 已提交
589 590 591 592 593 594 595 596 597 598 599 600 601 602
        asm volatile(
            "vdup.s8    d0, %[val]          \n"
            "cmp        %[pad_loop], #0     \n"
            "ble        store_pad_2w_%=     \n"
            "loop_pad_4w_%=:                \n"
            "vst1.32    {d0[0]}, [%[y0]]!   \n"
            "vst1.32    {d0[0]}, [%[y1]]!   \n"
            "vst1.32    {d0[0]}, [%[y2]]!   \n"
            "vst1.32    {d0[0]}, [%[y3]]!   \n"
            "subs       %[pad_loop], #1     \n"
            "bne        loop_pad_4w_%=      \n"

            "store_pad_2w_%=:               \n"
            "cmp        %[pad_remain], #2   \n"
H
hjchen2 已提交
603
            "blt        store_pad_1w_%=     \n"
H
hjchen2 已提交
604 605 606 607 608 609 610 611
            "vst1.16    {d0[0]}, [%[y0]]!   \n"
            "vst1.16    {d0[0]}, [%[y1]]!   \n"
            "vst1.16    {d0[0]}, [%[y2]]!   \n"
            "vst1.16    {d0[0]}, [%[y3]]!   \n"
            "sub        %[pad_remain], #2   \n"

            "store_pad_1w_%=:               \n"
            "cmp        %[pad_remain], #1   \n"
H
hjchen2 已提交
612
            "blt        end_%=              \n"
H
hjchen2 已提交
613 614 615 616 617 618 619 620
            "vst1.8    {d0[0]}, [%[y0]]!    \n"
            "vst1.8    {d0[0]}, [%[y1]]!    \n"
            "vst1.8    {d0[0]}, [%[y2]]!    \n"
            "vst1.8    {d0[0]}, [%[y3]]!    \n"
            "end_%=:                        \n"
            : [y0] "+r"(y0), [y1] "+r"(y1), [y2] "+r"(y2), [y3] "+r"(y3),
              [pad_loop] "+r"(pad_loop), [pad_remain] "+r"(pad_remain)
            : [val] "r"(padding_val)
H
hjchen2 已提交
621 622
            : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7",
              "q8", "q9", "q10", "q11", "q12");
H
hjchen2 已提交
623 624 625
      }
    }
    for (int c = (channels & 0xFFFC); c < channels; ++c) {
H
hjchen2 已提交
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
      const float *input0 = x + (batch * channels + c) * input_spatial_size;
      size_t offset = (batch * channels + c) * output_spatial_size;
      for (int h = 0; h < 2; ++h) {
        int8_t *y0 =
            y + offset + h * ((input_h + paddings[0]) * output_w - paddings[1]);
        int loop = start >> 4;
        int remain = start & 0xF;
        asm volatile(
            "vdup.s8    q0,     %[val]      \n"
            "cmp        %[loop], #0         \n"
            "ble        start_remain_%=     \n"

            "store_16w_%=:                  \n"
            "vst1.32    {q0}, [%[y0]]!      \n"
            "subs       %[loop], #1         \n"
            "bne        store_16w_%=        \n"

            "start_remain_%=:               \n"
            "cmp        %[remain], #8       \n"
            "blt        store_4w_%=         \n"
            "vst1.32    {d0}, [%[y0]]!      \n"
            "sub        %[remain], #8       \n"

            "store_4w_%=:                   \n"
            "cmp        %[remain], #4       \n"
            "blt        store_2w_%=         \n"
            "vst1.32    {d0[0]}, [%[y0]]!   \n"
            "sub        %[remain], #4       \n"

            "store_2w_%=:                   \n"
            "cmp        %[remain], #4       \n"
            "blt        store_1w_%=         \n"
            "vst1.16    {d0[0]}, [%[y0]]!   \n"
            "sub        %[remain], #2       \n"

            "store_1w_%=:                   \n"
            "cmp        %[remain], #1       \n"
            "blt        end_%=              \n"
            "vst1.8     {d0[0]}, [%[y0]]!   \n"
            "end_%=:                        \n"
            : [y0] "+r"(y0), [loop] "+r"(loop), [remain] "+r"(remain)
            : [val] "r"(padding_val)
            : "cc", "memory", "q0");
      }
      // quantize valid area
      int8_t *y0 = y + offset + start;
      for (int h = 0; h < input_h; ++h) {
        const float *x0 = input0 + h * input_w;
H
hjchen2 已提交
674
        int loop = input_w >> 4;
H
hjchen2 已提交
675
        int remain = input_w & 0xF;
H
hjchen2 已提交
676 677
        int pad_loop = paddings[1] >> 1;  // (paddings[1] << 1) >> 2
        int pad_remain = (paddings[1] << 1) & 0x3;
H
hjchen2 已提交
678 679 680 681 682 683 684
        asm volatile(
            "vdup.f32   q0, %[scale]        \n"
            "cmp        %[loop], #0         \n"
            "ble        quantize_remain_%=  \n"

            "loop_quantize_%=:              \n"
            "vld1.32    {q1, q2}, [%[x0]]!  \n"
H
hjchen2 已提交
685 686
            "vmul.f32   q1, q1, q0          \n"
            "vmul.f32   q2, q2, q0          \n"
H
hjchen2 已提交
687 688 689 690 691 692
            "vcvt.s32.f32  q1, q1           \n"
            "vcvt.s32.f32  q2, q2           \n"
            "vmovn.s32  d2, q1              \n"
            "vmovn.s32  d3, q2              \n"
            "vmovn.s16  d18, q1             \n"
            "vld1.32    {q1, q2}, [%[x0]]!  \n"
H
hjchen2 已提交
693 694
            "vmul.f32   q1, q1, q0          \n"
            "vmul.f32   q2, q2, q0          \n"
H
hjchen2 已提交
695 696 697 698 699
            "vcvt.s32.f32  q1, q1           \n"
            "vcvt.s32.f32  q2, q2           \n"
            "vmovn.s32  d2, q1              \n"
            "vmovn.s32  d3, q2              \n"
            "vmovn.s16  d19, q1             \n"
H
hjchen2 已提交
700
            "vst1.32    {q9}, [%[y0]]!      \n"
H
hjchen2 已提交
701 702 703 704 705 706 707 708

            "subs       %[loop], #1         \n"
            "bne        loop_quantize_%=    \n"

            "quantize_remain_%=:            \n"
            "cmp        %[remain], #0       \n"
            "ble        start_pad_%=        \n"

H
hjchen2 已提交
709 710 711
            "vldm       %[x0], {d2-d9}      \n"
            "vmul.f32   q1, q1, q0          \n"
            "vmul.f32   q2, q2, q0          \n"
H
hjchen2 已提交
712 713 714 715 716
            "vcvt.s32.f32  q1, q1           \n"
            "vcvt.s32.f32  q2, q2           \n"
            "vmovn.s32  d2, q1              \n"
            "vmovn.s32  d3, q2              \n"
            "vmovn.s16  d18, q1             \n"
H
hjchen2 已提交
717 718 719 720
            "vmul.f32   q3, q3, q0          \n"
            "vmul.f32   q4, q4, q0          \n"
            "vcvt.s32.f32  q1, q3           \n"
            "vcvt.s32.f32  q2, q4           \n"
H
hjchen2 已提交
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
            "vmovn.s32  d2, q1              \n"
            "vmovn.s32  d3, q2              \n"
            "vmovn.s16  d19, q1             \n"

            "cmp        %[remain], #8       \n"
            "blt        store_4w_%=         \n"
            "vst1.32    {d18}, [%[y0]]!     \n"
            "vmov.32    d18, d19            \n"
            "sub        %[remain], #8       \n"

            "store_4w_%=:                   \n"
            "cmp        %[remain], #4       \n"
            "blt        store_2w_%=         \n"
            "vst1.32    {d18[0]}, [%[y0]]!  \n"
            "vext.32    d18, d18, d18, #1   \n"
            "sub        %[remain], #4       \n"

            "store_2w_%=:                   \n"
            "cmp        %[remain], #2       \n"
            "blt        store_1w_%=         \n"
            "vst1.16    {d18[0]}, [%[y0]]!  \n"
            "vext.16    d18, d18, d18, #1   \n"
            "sub        %[remain], #2       \n"

            "store_1w_%=:"
            "cmp        %[remain], #1       \n"
            "blt        start_pad_%=        \n"
            "vst1.8     {d18[0]}, [%[y0]]!  \n"

            "start_pad_%=:                  \n"
            "vdup.s8    d0, %[val]          \n"
            "cmp        %[pad_loop], #0     \n"
            "ble        pad_remain_%=       \n"
            "loop_pad_4w_%=:                \n"
            "vst1.32    {d0[0]}, [%[y0]]!   \n"
            "subs       %[pad_loop], #1     \n"
            "bne        loop_pad_4w_%=      \n"

            "pad_remain_%=:                 \n"
            "cmp        %[pad_remain], #2   \n"
H
hjchen2 已提交
761
            "blt        store_pad_1w_%=     \n"
H
hjchen2 已提交
762 763 764 765 766
            "vst1.16    {d0[0]}, [%[y0]]!   \n"
            "sub        %[pad_remain], #2   \n"

            "store_pad_1w_%=:               \n"
            "cmp        %[pad_remain], #1   \n"
H
hjchen2 已提交
767 768
            "blt        end_%=              \n"
            "vst1.8     {d0[0]}, [%[y0]]!   \n"
H
hjchen2 已提交
769 770 771 772 773
            "end_%=:                        \n"
            : [x0] "+r"(x0), [y0] "+r"(y0), [loop] "+r"(loop),
              [remain] "+r"(remain), [pad_loop] "+r"(pad_loop),
              [pad_remain] "+r"(pad_remain)
            : [scale] "r"(scale), [val] "r"(padding_val)
H
hjchen2 已提交
774
            : "cc", "memory", "q0", "q1", "q2", "q3", "q4", "q9");
H
hjchen2 已提交
775 776 777 778 779 780
      }
    }
  }
}
#endif  // __aarch64__
#endif  // ARM_NEON
781

782
template <>
783 784 785 786
bool QuantizeKernel<CPU, float>::Init(QuantizeParam<CPU> *param) {
  return true;
}

787
template <>
L
liuruilong 已提交
788
void QuantizeKernel<CPU, float>::Compute(const QuantizeParam<CPU> &param) {
789
  const Tensor *input = param.input_;
H
hjchen2 已提交
790
  Tensor *output = param.output_;
791
  Tensor *output_scale = param.online_scale_;
H
hjchen2 已提交
792
  float max_abs = 0.f;
793 794 795 796 797
  if (param.is_static_) {
    max_abs = param.static_scale_;
  } else {
    max_abs = find_abs_max(input);
  }
H
hjchen2 已提交
798
  max_abs = std::max(max_abs, 1e-6f);
799
  // only support int8 currently
800 801
  float scale = 127 / max_abs;
  param.online_scale_->mutable_data<float>()[0] = max_abs;
H
hjchen2 已提交
802 803 804 805
  const auto &paddings = param.paddings_;
  // std::vector<int> paddings = {0, 0};
  // const auto padding_val = param.padding_val_;
  int8_t padding_val = 0;
806 807
  switch (param.round_type_) {
    case ROUND_NEAREST_TO_EVEN:
H
hjchen2 已提交
808
      quantize_round_to_even(input, scale, paddings, padding_val, output);
809 810
      break;
    case ROUND_NEAREST_TOWARDS_ZERO:
H
hjchen2 已提交
811
      quantize_round_to_zero(input, scale, paddings, padding_val, output);
812 813
      break;
    case ROUND_NEAREST_AWAY_ZERO:
H
hjchen2 已提交
814
      quantize_round_to_nearest(input, scale, paddings, padding_val, output);
815
      break;
816 817 818 819
    default:
      LOG(kLOG_ERROR) << "round type is not supported.";
      break;
  }
820 821 822
}

}  // namespace operators
823
}  // namespace paddle_mobile
824 825

#endif