quantize_kernel.cpp 8.9 KB
Newer Older
T
Tian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#ifdef PADDLE_MOBILE_CPU

17
#include "operators/kernel/quantize_kernel.h"
18 19
#include <cmath>
#include <limits>
T
Tian 已提交
20

21 22
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
H
Refine  
hjchen2 已提交
23

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
#ifndef __aarch64__
float32_t vmaxvq_f32(float32x4_t r) {
  float32x2_t v = vmax_f32(vget_high_f32(r), vget_low_f32(r));
  return vget_lane_f32(vpmax_f32(v, v), 0);
}
#endif

int32x4_t vrnd_towards_zero(float32x4_t r) {
  return vcvtq_s32_f32(r);
}

int32x4_t vrnd_away_zero(float32x4_t r) {
  float32x4_t plus  = vdupq_n_f32(0.5);
  float32x4_t minus = vdupq_n_f32(-0.5);
  float32x4_t zero  = vdupq_n_f32(0);
H
Refine  
hjchen2 已提交
39
  uint32x4_t more_than_zero = vcgtq_f32(r, zero);
40
  float32x4_t temp = vbslq_f32(more_than_zero, plus, minus);
H
Refine  
hjchen2 已提交
41
  temp = vaddq_f32(r, temp);
42 43 44 45 46
  int32x4_t ret = vcvtq_s32_f32(temp);
  return ret;
}

int32x4_t vrnd_to_even(float32x4_t r) {
H
Refine  
hjchen2 已提交
47
#if 0
48
  int32x4_t ret;
H
Refine  
hjchen2 已提交
49 50
  float value[4];
  vst1q_f32(value, r);
51
  for (int i = 0; i < 4; ++i) {
H
Refine  
hjchen2 已提交
52
    float v = round(value[i]);
53
    int32_t q = (int32_t)v;
H
Refine  
hjchen2 已提交
54
    if (abs(abs(v - value[i]) - 0.5) > 0) {
55 56 57 58 59 60 61 62 63 64
      ret[i] = q;
    } else {
      if (abs(q) % 2 == 0) {
        ret[i] = q;
      } else {
        ret[i] = q + (q > 0) ? -1 : 1;
      }
    }
  }
  return ret;
H
Refine  
hjchen2 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
#else 
  float32x4_t point5 = vdupq_n_f32(0.5);
  int32x4_t one = vdupq_n_s32(1);
  int32x4_t zero = vdupq_n_s32(0);

  int32x4_t rnd = vrnd_away_zero(r);
  float32x4_t frnd = vcvtq_f32_s32(rnd);
  frnd = vsubq_f32(frnd, r);
  frnd = vabsq_f32(frnd);
  uint32x4_t equal_point5 = vceqq_f32(frnd, point5);
  int32x4_t abs_rnd = vabsq_s32(rnd);
  abs_rnd = vandq_s32(abs_rnd, one);
  uint32x4_t not_mod2 = vreinterpretq_u32_s32(abs_rnd);
  uint32x4_t mask = vandq_u32(equal_point5, not_mod2);
  uint32x4_t more_than_zero = vcgtq_s32(rnd, zero);
  more_than_zero = vandq_u32(more_than_zero, vreinterpretq_u32_s32(one));
  mask = veorq_u32(more_than_zero, mask);
  more_than_zero = veorq_u32(more_than_zero, vreinterpretq_u32_s32(one));
  mask = vaddq_u32(more_than_zero, mask);
  int32x4_t smask = vreinterpretq_s32_u32(mask);
  smask = vsubq_s32(smask, one);
  rnd = vaddq_s32(rnd, smask); 
  return rnd;
 #endif
89 90 91
}
#endif

92 93 94
namespace paddle_mobile {
namespace operators {

95 96 97
static float find_abs_max(const Tensor *input) {
  float max_abs = float(0);
  const float *x = input->data<const float>();
98 99 100 101 102 103
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t max;
H
Refine  
hjchen2 已提交
104 105 106 107 108
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vabsq_f32(r0);
109 110 111
    r1 = vabsq_f32(r1);
    r2 = vabsq_f32(r2);
    r3 = vabsq_f32(r3);
H
Refine  
hjchen2 已提交
112 113 114 115
    max[0] = vmaxvq_f32(r0);
    max[1] = vmaxvq_f32(r1);
    max[2] = vmaxvq_f32(r2);
    max[3] = vmaxvq_f32(r3);
116 117 118 119 120 121 122 123 124
    max[0] = vmaxvq_f32(max);
    if (max[0] > max_abs) {
      max_abs = max[0];
    }
    x += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
125 126 127 128 129 130 131 132 133
    float value = std::abs(x[i]);
    if (value > max_abs) {
      max_abs = value;
    }
  }
  return max_abs;
}

static void quantize_round_to_even(const Tensor *input,
134 135
                                   const float scale,
                                   Tensor *output) {
136 137
  const float *x = input->data<const float>();
  int8_t *y = output->data<int8_t>();
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_to_even(r0);
    int32x4_t q1 = vrnd_to_even(r1);
    int32x4_t q2 = vrnd_to_even(r2);
    int32x4_t q3 = vrnd_to_even(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
    int16x8_t q5 = vcombine_s16(d1, d0);
    int16x8_t q6 = vcombine_s16(d3, d2);
H
Refine  
hjchen2 已提交
161 162 163 164
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
    vst1_s8(y, d5);
    vst1_s8(y + 8, d6);
165 166 167 168 169 170
    x += 16;
    y += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
171
    float value = x[i] * scale;
H
Refine  
hjchen2 已提交
172 173 174 175
    float v = round(value);
    int32_t q = (int32_t)v;
    if (abs(abs(q - value) - 0.5) > 0) {
      y[i] = q;
176
    } else {
H
Refine  
hjchen2 已提交
177 178
      if (abs(q) % 2 == 0) {
        y[i] = q;
179
      } else {
H
Refine  
hjchen2 已提交
180
        y[i] = q + (q > 0) ? -1 : 1;
181 182 183 184 185 186 187 188 189 190
      }
    }
  }
}

static void quantize_round_to_zero(const Tensor *input,
                            const float scale,
                            Tensor *output) {
  const float *x = input->data<const float>();
  int8_t *y = output->data<int8_t>();
191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
  size_t size = input->numel();
#ifdef defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_towards_zero(r0);
    int32x4_t q1 = vrnd_towards_zero(r1);
    int32x4_t q2 = vrnd_towards_zero(r2);
    int32x4_t q3 = vrnd_towards_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
    int16x8_t q5 = vcombine_s16(d1, d0);
    int16x8_t q6 = vcombine_s16(d3, d2);
H
Refine  
hjchen2 已提交
214 215 216 217
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
    vst1_s8(y, d5);
    vst1_s8(y + 8, d6);
218 219 220 221 222 223
    x += 16;
    y += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
224 225 226 227 228 229 230 231 232
    y[i] = trunc(x[i] * scale);
  }
}

static void quantize_round_to_nearest(const Tensor *input,
                               const float scale,
                               Tensor *output) {
  const float *x = input->data<const float>();
  int8_t *y = output->data<int8_t>();
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  size_t size = input->numel();
#ifdef defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_away_zero(r0);
    int32x4_t q1 = vrnd_away_zero(r1);
    int32x4_t q2 = vrnd_away_zero(r2);
    int32x4_t q3 = vrnd_away_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
    int16x8_t q5 = vcombine_s16(d1, d0);
    int16x8_t q6 = vcombine_s16(d3, d2);
H
Refine  
hjchen2 已提交
256 257 258 259
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
    vst1_s8(y, d5);
    vst1_s8(y + 8, d6);
260 261 262 263 264 265 266
    x += 16;
    y += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
    y[i] = trunc(x[i] * scale);
267 268 269
  }
}

270 271 272 273 274 275 276 277 278
template<>
bool QuantizeKernel<CPU, float>::Init(QuantizeParam<CPU> *param) {
  return true;
}

template<>
void QuantizeKernel<CPU, float>::Compute(
    const QuantizeParam<CPU> &param) const {
  // TODO
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  float max_abs = 0.f;
  const Tensor *input = param.input_;
  Tensor *output = param.out_;
  Tensor *output_scale = param.online_scale_;
  if (param.is_static_) {
    max_abs = param.static_scale_;
  } else {
    max_abs = find_abs_max(input);
  }
  if (max_abs < std::numeric_limits<float>::min()) {
    max_abs = std::numeric_limits<float>::min();
  }
  // only support int8 currently
  float online_scale = 127 / max_abs;
  param.online_scale_->mutable_data<float>()[0] = online_scale;
  switch (param.round_type_) {
    case ROUND_NEAREST_TO_EVEN:
      quantize_round_to_even(input, online_scale, output);
      break;
    case ROUND_NEAREST_TOWARDS_ZERO:
      quantize_round_to_zero(input, online_scale, output);
      break;
    case ROUND_NEAREST_AWAY_ZERO:
      quantize_round_to_nearest(input, online_scale, output);
    default:
      LOG(kLOG_ERROR) << "round type is not supported.";
      break;
  }
307 308 309 310
}

}  // namespace paddle_mobile
}  // namespace operators
311 312

#endif