depthwise_conv2d_compute_test.cc 11.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
17
#include "lite/backends/opencl/cl_image_converter.h"
18
#include "lite/backends/opencl/target_wrapper.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"

namespace paddle {
namespace lite {

template <typename T, int STRIDE_H = 1, int STRIDE_W = 1>
void depth_conv(const T* input_data,
                const lite::DDim& input_dims,
                const T* filter_data,
                const lite::DDim& filter_dims,
                T* output_data,
                const lite::DDim& output_dims) {
  int stride_h = STRIDE_H, stride_w = STRIDE_W;

  int64_t batches = input_dims[0];
  int64_t channels = input_dims[1];
  int64_t h = input_dims[2];
  int64_t w = input_dims[3];

  int64_t num_output = output_dims[1];
  int64_t outh = output_dims[2];
  int64_t outw = output_dims[3];

  int64_t filter_h = filter_dims[2];
  int64_t filter_w = filter_dims[3];

  const int64_t in_batch_size = channels * h * w;
  const int64_t out_batch_size = num_output * outh * outw;

  auto kernel_offset = std::unique_ptr<int[]>(new int[filter_h * filter_w]);
  {
    int p = 0;
    int offset = 0;
    int gap = w - filter_w;
    for (int i = 0; i < filter_h; i++) {
      for (int j = 0; j < filter_w; j++) {
        kernel_offset[p++] = offset;
        offset += 1;
      }
      offset += gap;
    }
  }

  for (int b = 0; b < batches; b++) {
    auto* input_batch_start = input_data + b * in_batch_size;
    auto* output_batch_start = output_data + b * out_batch_size;
    for (int p = 0; p < num_output; p++) {
      float* output_ptr = output_batch_start + p * outh * outw;
      const float* filter_ptr = filter_data + p * filter_h * filter_w;
      const float* input_ptr = input_batch_start + p * h * w;

      for (int i = 0; i < outh; i++) {
        for (int j = 0; j < outw; j++) {
          float sum = 0;
          const float* input_ch_start =
              input_ptr + i * stride_h * w + j * stride_w;

          for (int fh = 0; fh < filter_h; ++fh) {
            for (int fw = 0; fw < filter_w; ++fw) {
              float val = input_ch_start[kernel_offset[fh * filter_w + fw]];
              float w = filter_ptr[fh * filter_w + fw];
              sum += val * w;
            }
          }
          output_ptr[j] = sum;
        }

        output_ptr += outw;
      }
    }
  }
}

93
TEST(depthwise_conv2d_buffer_fp32, compute) {
Y
Yan Chunwei 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  LOG(INFO) << "to get kernel ...";
  auto kernels = KernelRegistry::Global().Create("depthwise_conv2d",
                                                 TARGET(kOpenCL),
                                                 PRECISION(kFloat),
                                                 DATALAYOUT(kNCHW));
  ASSERT_FALSE(kernels.empty());

  auto kernel = std::move(kernels.front());

  LOG(INFO) << "get kernel";
  lite::Tensor input, filter, output;
  operators::ConvParam param;
  param.x = &input;
  param.filter = &filter;
  param.output = &output;
H
HappyAngel 已提交
109 110
  std::vector<int> paddings = {0, 0};
  param.paddings = std::make_shared<std::vector<int>>(paddings);
Y
Yan Chunwei 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
  param.strides = std::vector<int>{1, 1};

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();

  kernel->SetParam(param);
  std::unique_ptr<KernelContext> dep_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(dep_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(dep_context));

  std::default_random_engine engine;
  std::uniform_real_distribution<float> gen(-5, 5);
  std::vector<float> input_v(4 * 32 * 112 * 112);
  std::vector<float> filter_v(32 * 1 * 3 * 3);
  for (auto& i : input_v) {
    i = gen(engine);
  }
  for (auto& f : filter_v) {
    f = gen(engine);
  }

  input.Assign<float, lite::DDim, TARGET(kOpenCL)>(
      input_v.data(), lite::DDim{std::vector<int64_t>({4, 32, 112, 112})});
  filter.Assign<float, lite::DDim, TARGET(kOpenCL)>(
      filter_v.data(), lite::DDim{std::vector<int64_t>({32, 1, 3, 3})});
  output.Resize({4, 32, 110, 110});
  kernel->Launch();

  auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto* out_ptr = param.output->data<float, cl::Buffer>();
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    auto& event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
  }

  lite::Tensor output_ref;
  output_ref.Resize({4, 32, 110, 110});
  auto* output_ref_data = output_ref.mutable_data<float>(TARGET(kARM));
  auto* input_data = input.mutable_data<float, cl::Buffer>();
  auto* filter_data = filter.mutable_data<float, cl::Buffer>();
  auto* mapped_input = static_cast<float*>(TargetWrapperCL::Map(
      input_data, 0, sizeof(float) * input.dims().production()));
  auto* mapped_filter = static_cast<float*>(TargetWrapperCL::Map(
      filter_data, 0, sizeof(float) * filter.dims().production()));
  depth_conv<float, 1, 1>(mapped_input,
                          input.dims(),
                          mapped_filter,
                          filter.dims(),
                          output_ref_data,
                          output_ref.dims());

  auto* output_data = output.mutable_data<float, cl::Buffer>();
  auto* mapped_output = static_cast<float*>(TargetWrapperCL::Map(
      output_data, 0, sizeof(float) * output.dims().production()));

  for (int i = 0; i < output.dims().production(); i++) {
    EXPECT_NEAR(mapped_output[i], output_ref_data[i], 1e-4);
  }

  TargetWrapperCL::Unmap(output_data, mapped_output);
  TargetWrapperCL::Unmap(filter_data, mapped_filter);
  TargetWrapperCL::Unmap(input_data, mapped_input);
}

180
TEST(depthwise_conv2d_image2d_fp16, compute) {
181 182 183
  LOG(INFO) << "to get kernel ...";
  auto kernels = KernelRegistry::Global().Create("depthwise_conv2d",
                                                 TARGET(kOpenCL),
184 185
                                                 PRECISION(kFP16),
                                                 DATALAYOUT(kImageDefault));
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
  ASSERT_FALSE(kernels.empty());

  auto kernel = std::move(kernels.front());

  LOG(INFO) << "get kernel";
  lite::Tensor input, filter, output;
  operators::ConvParam param;
  param.x = &input;
  param.filter = &filter;
  param.output = &output;
  std::vector<int> paddings = {0, 0};
  param.paddings = std::make_shared<std::vector<int>>(paddings);
  param.strides = std::vector<int>{1, 1};
  std::vector<int> dilations = {1, 1};
  param.dilations = std::make_shared<std::vector<int>>(dilations);

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();

  kernel->SetParam(param);
  std::unique_ptr<KernelContext> dep_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(dep_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(dep_context));

  LOG(INFO) << "kernel ready";
  std::default_random_engine engine;
  std::uniform_real_distribution<float> gen(-5, 5);
  std::vector<float> input_v(1 * 32 * 112 * 112);
  std::vector<float> filter_v(32 * 1 * 3 * 3);
  for (auto& i : input_v) {
    i = gen(engine);
  }
  for (auto& f : filter_v) {
    f = gen(engine);
  }

  LOG(INFO) << "prepare input";
  input.Resize({1, 32, 112, 112});
  CLImageConverterDefault* default_converter = new CLImageConverterDefault();
  DDim input_image_shape =
      default_converter->InitImageDimInfoWith(input.dims());
  LOG(INFO) << "input_image_shape = " << input_image_shape[0] << " "
            << input_image_shape[1];
  std::vector<float> input_image_data(input_image_shape.production() *
                                      4);  // 4 : RGBA
  default_converter->NCHWToImage(
      input_v.data(), input_image_data.data(), input.dims());
234
  auto* input_image = input.mutable_data<int16_t, cl::Image2D>(
235 236 237 238 239 240 241 242 243 244 245 246
      input_image_shape[0], input_image_shape[1], input_image_data.data());

  LOG(INFO) << "prepare kernel";
  filter.Resize({32, 1, 3, 3});
  CLImageConverterNWBlock* nw_converter = new CLImageConverterNWBlock();
  DDim filter_image_shape = nw_converter->InitImageDimInfoWith(filter.dims());
  LOG(INFO) << "filter_image_shape = " << filter_image_shape[0] << " "
            << filter_image_shape[1];
  std::vector<float> filter_image_data(filter_image_shape.production() *
                                       4);  // 4 : RGBA
  nw_converter->NCHWToImage(
      filter_v.data(), filter_image_data.data(), filter.dims());
247
  auto* filter_image = filter.mutable_data<int16_t, cl::Image2D>(
248 249 250 251 252 253 254 255
      filter_image_shape[0], filter_image_shape[1], filter_image_data.data());

  LOG(INFO) << "launch";
  output.Resize({1, 32, 110, 110});
  DDim output_image_shape =
      default_converter->InitImageDimInfoWith(output.dims());
  LOG(INFO) << "output_image_shape = " << output_image_shape[0] << " "
            << output_image_shape[1];
256
  auto* output_image = output.mutable_data<int16_t, cl::Image2D>(
257 258 259 260 261
      output_image_shape[0], output_image_shape[1]);

  kernel->Launch();

  auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
262
  auto* out_ptr = param.output->data<int16_t, cl::Image2D>();
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    LOG(INFO) << "--- Find the sync event for the target cl tensor. ---";
    auto& event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
    LOG(INFO) << "Could not find the sync event for the target cl tensor.";
  }

  lite::Tensor output_ref;
  output_ref.Resize({1, 32, 110, 110});
  auto* output_ref_data = output_ref.mutable_data<float>(TARGET(kARM));
  depth_conv<float, 1, 1>(input_v.data(),
                          input.dims(),
                          filter_v.data(),
                          filter.dims(),
                          output_ref_data,
                          output_ref.dims());

  const size_t cl_image2d_row_pitch{0};
  const size_t cl_image2d_slice_pitch{0};

  float* output_image_data = new float[output_image_shape.production() * 4];
  TargetWrapperCL::ImgcpySync(output_image_data,
                              output_image,
                              output_image_shape[0],
                              output_image_shape[1],
                              cl_image2d_row_pitch,
                              cl_image2d_slice_pitch,
                              IoDirection::DtoH);

  float* output_data = new float[output_image_shape.production() * 4];
  default_converter->ImageToNCHW(
      output_image_data, output_data, output_image_shape, output.dims());

  LOG(INFO) << "output_data vs output_ref_data";
  for (int i = 0; i < output.dims().production(); i++) {
    EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-4);
    LOG(INFO) << output_data[i] << " " << output_ref_data[i];
  }
}

Y
Yan Chunwei 已提交
307 308 309 310
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(depthwise_conv2d, kOpenCL, kFloat, kNCHW, def);
311
USE_LITE_KERNEL(depthwise_conv2d, kOpenCL, kFP16, kImageDefault, image2d);