depthwise_conv2d_compute_test.cc 6.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include <random>
#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/opencl/target_wrapper.h"

namespace paddle {
namespace lite {

template <typename T, int STRIDE_H = 1, int STRIDE_W = 1>
void depth_conv(const T* input_data,
                const lite::DDim& input_dims,
                const T* filter_data,
                const lite::DDim& filter_dims,
                T* output_data,
                const lite::DDim& output_dims) {
  int stride_h = STRIDE_H, stride_w = STRIDE_W;

  int64_t batches = input_dims[0];
  int64_t channels = input_dims[1];
  int64_t h = input_dims[2];
  int64_t w = input_dims[3];

  int64_t num_output = output_dims[1];
  int64_t outh = output_dims[2];
  int64_t outw = output_dims[3];

  int64_t filter_h = filter_dims[2];
  int64_t filter_w = filter_dims[3];

  const int64_t in_batch_size = channels * h * w;
  const int64_t out_batch_size = num_output * outh * outw;

  auto kernel_offset = std::unique_ptr<int[]>(new int[filter_h * filter_w]);
  {
    int p = 0;
    int offset = 0;
    int gap = w - filter_w;
    for (int i = 0; i < filter_h; i++) {
      for (int j = 0; j < filter_w; j++) {
        kernel_offset[p++] = offset;
        offset += 1;
      }
      offset += gap;
    }
  }

  for (int b = 0; b < batches; b++) {
    auto* input_batch_start = input_data + b * in_batch_size;
    auto* output_batch_start = output_data + b * out_batch_size;
    for (int p = 0; p < num_output; p++) {
      float* output_ptr = output_batch_start + p * outh * outw;
      const float* filter_ptr = filter_data + p * filter_h * filter_w;
      const float* input_ptr = input_batch_start + p * h * w;

      for (int i = 0; i < outh; i++) {
        for (int j = 0; j < outw; j++) {
          float sum = 0;
          const float* input_ch_start =
              input_ptr + i * stride_h * w + j * stride_w;

          for (int fh = 0; fh < filter_h; ++fh) {
            for (int fw = 0; fw < filter_w; ++fw) {
              float val = input_ch_start[kernel_offset[fh * filter_w + fw]];
              float w = filter_ptr[fh * filter_w + fw];
              sum += val * w;
            }
          }
          output_ptr[j] = sum;
        }

        output_ptr += outw;
      }
    }
  }
}

TEST(depthwise_conv2d, compute) {
  LOG(INFO) << "to get kernel ...";
  auto kernels = KernelRegistry::Global().Create("depthwise_conv2d",
                                                 TARGET(kOpenCL),
                                                 PRECISION(kFloat),
                                                 DATALAYOUT(kNCHW));
  ASSERT_FALSE(kernels.empty());

  auto kernel = std::move(kernels.front());

  LOG(INFO) << "get kernel";
  lite::Tensor input, filter, output;
  operators::ConvParam param;
  param.x = &input;
  param.filter = &filter;
  param.output = &output;
  param.paddings = std::vector<int>{0, 0};
  param.strides = std::vector<int>{1, 1};

  std::unique_ptr<KernelContext> context(new KernelContext);
  context->As<OpenCLContext>().InitOnce();

  kernel->SetParam(param);
  std::unique_ptr<KernelContext> dep_context(new KernelContext);
  context->As<OpenCLContext>().CopySharedTo(
      &(dep_context->As<OpenCLContext>()));
  kernel->SetContext(std::move(dep_context));

  std::default_random_engine engine;
  std::uniform_real_distribution<float> gen(-5, 5);
  std::vector<float> input_v(4 * 32 * 112 * 112);
  std::vector<float> filter_v(32 * 1 * 3 * 3);
  for (auto& i : input_v) {
    i = gen(engine);
  }
  for (auto& f : filter_v) {
    f = gen(engine);
  }

  input.Assign<float, lite::DDim, TARGET(kOpenCL)>(
      input_v.data(), lite::DDim{std::vector<int64_t>({4, 32, 112, 112})});
  filter.Assign<float, lite::DDim, TARGET(kOpenCL)>(
      filter_v.data(), lite::DDim{std::vector<int64_t>({32, 1, 3, 3})});
  output.Resize({4, 32, 110, 110});
  kernel->Launch();

  auto* wait_list = context->As<OpenCLContext>().cl_wait_list();
  auto* out_ptr = param.output->data<float, cl::Buffer>();
  auto it = wait_list->find(out_ptr);
  if (it != wait_list->end()) {
    VLOG(4) << "--- Find the sync event for the target cl tensor. ---";
    auto& event = *(it->second);
    event.wait();
  } else {
    LOG(FATAL) << "Could not find the sync event for the target cl tensor.";
  }

  lite::Tensor output_ref;
  output_ref.Resize({4, 32, 110, 110});
  auto* output_ref_data = output_ref.mutable_data<float>(TARGET(kARM));
  auto* input_data = input.mutable_data<float, cl::Buffer>();
  auto* filter_data = filter.mutable_data<float, cl::Buffer>();
  auto* mapped_input = static_cast<float*>(TargetWrapperCL::Map(
      input_data, 0, sizeof(float) * input.dims().production()));
  auto* mapped_filter = static_cast<float*>(TargetWrapperCL::Map(
      filter_data, 0, sizeof(float) * filter.dims().production()));
  depth_conv<float, 1, 1>(mapped_input,
                          input.dims(),
                          mapped_filter,
                          filter.dims(),
                          output_ref_data,
                          output_ref.dims());

  auto* output_data = output.mutable_data<float, cl::Buffer>();
  auto* mapped_output = static_cast<float*>(TargetWrapperCL::Map(
      output_data, 0, sizeof(float) * output.dims().production()));

  for (int i = 0; i < output.dims().production(); i++) {
    EXPECT_NEAR(mapped_output[i], output_ref_data[i], 1e-4);
  }

  TargetWrapperCL::Unmap(output_data, mapped_output);
  TargetWrapperCL::Unmap(filter_data, mapped_filter);
  TargetWrapperCL::Unmap(input_data, mapped_input);
}

}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(depthwise_conv2d, kOpenCL, kFloat, kNCHW, def);