run.py 24.4 KB
Newer Older
Y
Yanzhan Yang 已提交
1
# -*- coding: utf-8 -*
Y
Yanzhan Yang 已提交
2 3 4 5 6 7 8 9 10 11 12
import os
import sys
import math
import subprocess
import numpy as np
import paddle.fluid as fluid

model_path = "model"
checked_model_path = "checked_model"
feed_path = "feeds"
output_path = "outputs"
13
diff_threshold = 0.1
Y
Yanzhan Yang 已提交
14 15
is_lod = False
mobile_model_path = ""
Y
Yanzhan Yang 已提交
16
fast_check = False
17 18 19
is_sample_step = False
sample_step = 1
sample_num = 20
Z
zp7 已提交
20 21
need_encrypt = False
checked_encrypt_model_path = "checked_encrypt_model"
22 23 24
output_var_filter = []
output_key_filter = {}
check_shape = False
25 26
quantification = False
quantification_fold = 1000
27 28
architecture = "arm-v7a"
# architecture = "arm-v8a"
29
correct_persistable = False
Y
Yanzhan Yang 已提交
30 31

np.set_printoptions(linewidth=150)
Y
Yanzhan Yang 已提交
32 33 34 35 36 37 38

mobile_exec_root = "/data/local/tmp/bin"
mobile_src_root = os.path.abspath("../../../")
if mobile_src_root.endswith("/"):
    mobile_src_root = mobile_src_root[:-1]

dot = "•"
Y
Yanzhan Yang 已提交
39 40 41 42
black = lambda x: "\033[30m" + str(x) + "\033[0m"
red = lambda x: "\033[31m" + str(x) + "\033[0m"
green = lambda x: "\033[32m" + str(x) + "\033[0m"
yellow = lambda x: "\033[33m" + str(x) + "\033[0m"
Y
Yanzhan Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
reset = lambda x: "\033[0m" + str(x)

def pp_tab(x, level=0):
    header = ""
    for i in range(0, level):
        header += "\t"
    print(header + str(x))
def pp_black(x, level=0):
    pp_tab(black(x) + reset(""), level)
def pp_red(x, level=0):
    pp_tab(red(x) + reset(""), level)
def pp_green(x, level=0):
    pp_tab(green(x) + reset(""), level)
def pp_yellow(x, level=0):
    pp_tab(yellow(x) + reset(""), level)

def sh(command):
    pipe = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
    return pipe.stdout.read().decode("utf-8")
def push(src, dest=""):
    sh("adb push {} {}".format(src, mobile_exec_root + "/" + dest))

pp_yellow(dot + " start inspecting fluid model")

exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())

# 加载模型
def load_model(model_path):
    prog, feeds, fetches = fluid.io.load_inference_model(dirname=model_path, executor=exe, model_filename="model", params_filename="params")
73 74 75 76 77 78 79 80 81 82 83 84
    global correct_persistable
    if correct_persistable:
        ops = prog.current_block().ops
        vars = prog.current_block().vars
        for op in ops:
            for var_name in op.output_arg_names:
                if var_name == "fetch":
                    continue
                var = vars[var_name]
                if var.persistable:
                    pp_red("has found non-persistable output var : {}".format(var_name))
                    var.persistable = False
Y
Yanzhan Yang 已提交
85 86 87 88 89
    return (prog, feeds, fetches)

prog, feeds, fetches = load_model(model_path)

# 强制要求所有张量的形状,在model和params中一致,并重新保存模型
90
def resave_model(feed_kv):
Y
Yanzhan Yang 已提交
91 92 93 94
    if len(mobile_model_path) > 0:
        pp_green("has set mobile_model_path, stop checking model & params", 1)
        sh("cp {}/* {}".format(mobile_model_path, checked_model_path))
        return
Y
Yanzhan Yang 已提交
95 96 97 98 99
    ops = prog.current_block().ops
    vars = prog.current_block().vars
    # 强制所有var为可持久化
    p_names = []
    for name in vars:
Y
Yanzhan Yang 已提交
100
        name = str(name)
Y
Yanzhan Yang 已提交
101 102 103 104
        v = fluid.framework._get_var(name, prog)
        if not v.persistable:
            v.persistable = True
            p_names.append(name)
105
    outputs = run_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
106 107 108
    has_found_wrong_shape = False
    # 修正每个var的形状
    for name in vars:
Y
Yanzhan Yang 已提交
109
        name = str(name)
Y
Yanzhan Yang 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        v = vars[name]
        if v.persistable:
            v1 = fluid.global_scope().find_var(name)
            try:
                t1 = v1.get_tensor()
                shape = t1.shape()
            except:
                continue
            if v.desc.shape() != shape:
                has_found_wrong_shape = True
            v.desc.set_shape(shape)
    # 恢复var的可持久化属性
    for name in p_names:
        v = fluid.framework._get_var(name, prog)
        v.persistable = False
125 126
    if not quantification:
        fluid.io.save_inference_model(dirname=checked_model_path, feeded_var_names=feeds, target_vars=fetches, executor=exe, main_program=prog, model_filename="model", params_filename="params")
Y
Yanzhan Yang 已提交
127 128 129 130 131 132
    if has_found_wrong_shape:
        pp_red("has found wrong shape", 1)
    else:
        pp_green("has not found wrong shape", 1)
    pp_green("new model is saved into directory 【{}】".format(checked_model_path), 1)

Z
zp7 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
# 分别加密model和params,加密key使用同一个
def encrypt_model():
    if not need_encrypt:
        return
    pp_yellow(dot + dot + " encrypting model")
    if not os.path.exists(checked_encrypt_model_path):
        os.mkdir(checked_encrypt_model_path)
    res = sh("model-encrypt-tool/enc_key_gen -l 20 -c 232")
    lines = res.split("\n")

    for line in lines:
        if line.startswith("key:"):
            line = line.replace('key:','')
            sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/model -o "
               "checked_model/model.ml".format(line))
            sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/params  -o checked_model/params.ml".format(line))
            pp_green("model has been encrypted, key is : {}".format(line), 1)
            sh("mv {} {}".format(checked_model_path + "/*.ml", checked_encrypt_model_path))
            return
    pp_red("model encrypt error", 1)

Y
Yanzhan Yang 已提交
154 155 156 157
# 生成feed的key-value对
def gen_feed_kv():
    feed_kv = {}
    for feed_name in feeds:
158
        feed_shape = get_feed_var_shape(feed_name)
Y
Yanzhan Yang 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
        data = np.random.random(feed_shape).astype("float32")
        feed_kv[feed_name] = data
    return feed_kv

# 保存feed的key-value对
def save_feed_kv(feed_kv):
    for feed_name in feed_kv:
        feed_data = feed_kv[feed_name]
        feed_list = feed_data.flatten().tolist()
        if not os.path.exists(feed_path):
            os.mkdir(feed_path)
        file_name = feed_name.replace("/", "_")
        out_file = open(feed_path + "/" + file_name, "w")
        for feed_item in feed_list:
            out_file.write("{}\n".format(feed_item))
        out_file.close()

last_feed_var_name = None
last_feed_file_name = None
178
last_feed_var_lod = None
Y
Yanzhan Yang 已提交
179 180
# 加载feed的key-value对
def load_feed_kv():
Y
Yanzhan Yang 已提交
181 182
    if not os.path.exists(feed_path):
        return None
Y
Yanzhan Yang 已提交
183 184
    global last_feed_var_name
    global last_feed_file_name
185
    global last_feed_var_lod
Y
Yanzhan Yang 已提交
186 187 188 189
    feed_kv = {}
    pp_yellow(dot + dot + " checking feed info")
    pp_green("feed data is saved into directory 【{}】".format(feed_path), 1)
    for feed_name in feeds:
190
        feed_shape = get_feed_var_shape(feed_name)
Y
Yanzhan Yang 已提交
191 192 193 194
        pp_tab("feed var name : {}; feed var shape : {}".format(feed_name, feed_shape), 1)
        file_name = feed_name.replace("/", "_")
        last_feed_var_name = feed_name
        last_feed_file_name = file_name
Y
Yanzhan Yang 已提交
195 196 197 198 199 200 201
        feed_file_path = feed_path + "/" + file_name
        if not os.path.exists(feed_file_path):
            return None
        data = np.loadtxt(feed_file_path)
        expected_len = 1
        for dim in feed_shape:
            expected_len *= dim
202
        if len(np.atleast_1d(data)) != expected_len:
Y
Yanzhan Yang 已提交
203 204
            return None
        data = data.reshape(feed_shape).astype("float32")
205 206
        
        if is_lod:
207 208 209 210
            data_shape = [1]
            for dim in feed_shape:
                data_shape.append(dim)
            data = data.reshape(data_shape).astype("float32")
211 212 213 214 215
            tensor = fluid.LoDTensor()
            seq_lens = [len(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
Y
Yanzhan Yang 已提交
216
                cur_len += l
217 218 219 220 221 222 223 224
                lod.append(cur_len)
            data = data.reshape(feed_shape)
            tensor.set(data, fluid.CPUPlace())
            tensor.set_lod([lod])
            last_feed_var_lod = lod
            feed_kv[feed_name] = tensor
        else:
            feed_kv[feed_name] = data
Y
Yanzhan Yang 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    return feed_kv

# 运行模型
def run_model(feed_kv=None):
    if feed_kv is None:
        feed_kv = gen_feed_kv()
    outputs = exe.run(prog, feed=feed_kv, fetch_list=fetches, return_numpy=False)
    results = []
    for output in outputs:
        results.append(np.array(output))
    return results

# 获取变量形状
def get_var_shape(var_name):
    vars = prog.current_block().vars
    shape = vars[var_name].desc.shape()
    for i in range(len(shape)):
        dim = shape[i]
        if dim == -1:
            shape[i] = 1
    return shape

247 248 249 250 251 252
# 获取输入变量形状
def get_feed_var_shape(var_name):
    # 如果想写死输入形状,放开以下语句
    # return [1, 3, 224, 224]
    return get_var_shape(var_name)

253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
persistable_cache = []
# 所有var,全部变成持久化
def force_all_vars_to_persistable():
    global persistable_cache
    for var_name in vars.keys():
        var_name = str(var_name)
        v = fluid.framework._get_var(var_name, prog)
        persistable = v.persistable
        if not persistable:
            persistable_cache.append(var_name)
            v.persistable = True

# 恢复持久化属性
def restore_all_vars_persistable():
    global persistable_cache
    for var_name in vars.keys():
        var_name = str(var_name)
        v = fluid.framework._get_var(var_name, prog)
        persistable = v.persistable
        if var_name in persistable_cache:
            v.persistable = False
    persistable_cache = []

Y
Yanzhan Yang 已提交
276 277
# 获取var的数据
def get_var_data(var_name, feed_kv=None):
278
    output = np.array(fluid.global_scope().var(var_name).get_tensor())
Y
Yanzhan Yang 已提交
279 280 281 282
    return output

output_var_cache = {}
def tensor_sample(tensor):
283 284 285 286 287
    if is_sample_step:
        step = sample_step
    else:
        step = math.floor(len(tensor) / sample_num)
    step = max(step, 1)
288
    step = int(step)
Y
Yanzhan Yang 已提交
289
    sample = []
290
    for i in range(0, len(tensor), step):
Y
Yanzhan Yang 已提交
291 292 293
        sample.append(tensor[i])
    return sample

294
op_cache = {}
Y
Yanzhan Yang 已提交
295 296
# 获取每层输出的数据
def save_all_op_output(feed_kv=None):
297 298
    force_all_vars_to_persistable()
    outputs = run_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
299 300 301
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    ops = prog.current_block().ops
Y
Yanzhan Yang 已提交
302 303 304
    fetch_names = []
    for fetch in fetches:
        fetch_names.append(fetch.name)
Y
Yanzhan Yang 已提交
305
    feed_names = feeds
306 307 308
    if len(output_var_filter) > 0:
        for fetch_name in fetch_names:
            output_var_filter.append(fetch_name)
Y
Yanzhan Yang 已提交
309 310 311
    for i in range(len(ops)):
        op = ops[i]
        var_name = None
312 313 314 315
        var_name_index = -1
        for index in range(len(op.output_names)):
            if op.output_names[index] in ["Y", "Out", "Output"]:
                var_name_index = index
Y
Yanzhan Yang 已提交
316
                break
317 318 319 320 321 322 323
        if var_name_index != -1:
            var_name = op.output_arg_names[var_name_index]
        else:
            for name in op.output_arg_names:
                var_name = name
                if "tmp" in name:
                    break
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
        if len(output_var_filter) > 0:
            if var_name not in output_var_filter:
                continue
        # real_var_name = None
        # if op.type == "fetch":
        #     for name in op.input_arg_names:
        #         real_var_name = name
        #         if "tmp" in name:
        #             break
        # else:
        #     real_var_name = var_name
        if fast_check:
            if var_name not in fetch_names and var_name not in feed_names:
                continue
        try:
            data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
            sample = tensor_sample(data)
            output_var_cache[var_name] = (sample)
            op_cache[i] = (var_name, op)
            file_name = var_name.replace("/", "_")
            out_file = open(output_path + "/" + file_name, "w")
            if var_name in feed_names:
                for item in data:
                    out_file.write("{}\n".format(item))
            else:
                for item in sample:
                    out_file.write("{}\n".format(item))
            out_file.close()
        except:
            pass
    for i in range(len(ops)):
        op = ops[i]
        if op.type not in output_key_filter:
            continue
        var_name = None
        var_name_index = -1
        for index in range(len(op.output_names)):
            if op.output_names[index] in output_key_filter[op.type]:
                var_name_index = index
                break
        if var_name_index != -1:
            var_name = op.output_arg_names[var_name_index]
        else:
            continue
        if len(output_var_filter) > 0:
            if var_name not in output_var_filter:
                continue
371 372 373 374 375 376 377 378
        # real_var_name = None
        # if op.type == "fetch":
        #     for name in op.input_arg_names:
        #         real_var_name = name
        #         if "tmp" in name:
        #             break
        # else:
        #     real_var_name = var_name
Y
Yanzhan Yang 已提交
379
        if fast_check:
Y
Yanzhan Yang 已提交
380
            if var_name not in fetch_names and var_name not in feed_names:
Y
Yanzhan Yang 已提交
381
                continue
Y
Yanzhan Yang 已提交
382 383 384 385 386 387 388
        try:
            data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
            sample = tensor_sample(data)
            output_var_cache[var_name] = (sample)
            op_cache[i] = (var_name, op)
            file_name = var_name.replace("/", "_")
            out_file = open(output_path + "/" + file_name, "w")
389 390 391 392 393 394
            if var_name in feed_names:
                for item in data:
                    out_file.write("{}\n".format(item))
            else:
                for item in sample:
                    out_file.write("{}\n".format(item))
Y
Yanzhan Yang 已提交
395 396 397 398
            out_file.close()
        except:
            pass
    pp_green("all the op outputs are saved into directory 【{}】".format(output_path), 1)
399
    restore_all_vars_persistable()
Y
Yanzhan Yang 已提交
400 401 402 403 404 405 406 407 408 409

ops = prog.current_block().ops
vars = prog.current_block().vars

pp_yellow(dot + dot + " checking op list")
op_types = set()
for op in ops:
    op_types.add(op.type)
pp_tab("op types : {}".format(op_types), 1)

Y
Yanzhan Yang 已提交
410
def check_mobile_results(args, fuse, mem_opt):
411
    args = "{} {} {} {} {}".format("1" if fuse else "0", "1" if mem_opt else "0", "1" if quantification else "0", quantification_fold, args)
Y
Yanzhan Yang 已提交
412 413
    res = sh("adb shell \"cd {} && export LD_LIBRARY_PATH=. && ./test-net {}\"".format(mobile_exec_root, args))
    lines = res.split("\n")
Y
Yanzhan Yang 已提交
414 415
    # for line in lines:
    #     print(line)
Y
Yanzhan Yang 已提交
416 417 418 419
    for line in lines:
        if line.startswith("auto-test-debug"):
            print(line)
    pp_yellow(dot + dot + " checking paddle mobile results for {} -- {} ".format(green("【fusion】" if fuse else "【non fusion】"), green("【memory-optimization】" if mem_opt else "【non-memory-optimization】")))
Y
Yanzhan Yang 已提交
420 421 422
    mobile_var_cache = {}
    for line in lines:
        parts = line.split(" ")
Y
Yanzhan Yang 已提交
423 424 425
        if len(parts) < 2:
            continue
        if "auto-test" != parts[0]:
Y
Yanzhan Yang 已提交
426 427 428 429 430
            continue
        if parts[1] == "load-time-cost":
            pp_green("load time cost : {}".format(parts[2]), 1) 
        elif parts[1] == "predict-time-cost":
            pp_green("predict time cost : {}".format(parts[2]), 1) 
431 432
        elif parts[1] == "preprocess-time-cost":
            pp_green("preprocess time cost : {}".format(parts[2]), 1)
Y
Yanzhan Yang 已提交
433 434 435 436 437 438 439
        elif parts[1] == "var":
            var_name = parts[2]
            values = list(map(lambda x: float(x), parts[3:]))
            mobile_var_cache[var_name] = values
    error_index = None
    error_values1 = None
    error_values2 = None
Y
Yanzhan Yang 已提交
440 441 442 443
    checked_names = []
    fetch_names = []
    for fetch in fetches:
        fetch_names.append(fetch.name)
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    fetch_diff = 0.0
    fetch_count = 0
    for index in op_cache:
        op_output_var_name, op = op_cache[index]
        if not op_output_var_name in output_var_cache:
            continue
        if not op_output_var_name in mobile_var_cache:
            continue
        if op_output_var_name not in fetch_names:
            continue
        values1 = output_var_cache[op_output_var_name]
        values2 = mobile_var_cache[op_output_var_name]
        shape = get_var_shape(op_output_var_name) if check_shape else []
        for i in range(len(values1)):
            v1 = values1[i]
            v2 = values2[len(shape) + i]
            fetch_diff += abs(v1 - v2)
            fetch_count += 1
    if fetch_count != 0:
        pp_yellow("output avg diff : {}".format(fetch_diff / fetch_count), 1)
Y
Yanzhan Yang 已提交
464 465
    for index in op_cache:
        op_output_var_name, op = op_cache[index]
Y
Yanzhan Yang 已提交
466 467 468 469 470 471 472 473
        if mem_opt:
            found_in_fetch = False
            for fetch in fetches:
                if op_output_var_name == fetch.name:
                    found_in_fetch = True
                    break
            if not found_in_fetch:
                continue
Y
Yanzhan Yang 已提交
474 475 476 477
        if not op_output_var_name in output_var_cache:
            continue
        if not op_output_var_name in mobile_var_cache:
            continue
478 479
        if op_output_var_name not in fetch_names:
            continue
Y
Yanzhan Yang 已提交
480 481
        values1 = output_var_cache[op_output_var_name]
        values2 = mobile_var_cache[op_output_var_name]
482 483
        shape = get_var_shape(op_output_var_name) if check_shape else []
        if len(values1) + len(shape) != len(values2):
Y
Yanzhan Yang 已提交
484
            error_index = index
485 486 487 488 489 490
        for i in range(len(shape)):
            v1 = shape[i]
            v2 = values2[i]
            if v1 != v2:
                error_index = index
                break
Y
Yanzhan Yang 已提交
491 492 493
        if error_index == None:
            for i in range(len(values1)):
                v1 = values1[i]
494
                v2 = values2[len(shape) + i]
Y
Yanzhan Yang 已提交
495
                if abs(v1 - v2) > diff_threshold:
Y
Yanzhan Yang 已提交
496 497
                    error_index = index
                    break
Y
Yanzhan Yang 已提交
498
        checked_names.append(op_output_var_name)
Y
Yanzhan Yang 已提交
499 500 501 502
        if error_index != None:
            error_values1 = values1
            error_values2 = values2
            break
Y
Yanzhan Yang 已提交
503 504 505 506 507
    if error_index == None:
        for name in fetch_names:
            if name not in checked_names:
                error_index = -1
                break
Y
Yanzhan Yang 已提交
508 509
    if error_index == None:
        pp_green("outputs are all correct", 1)
Y
Yanzhan Yang 已提交
510 511
    elif error_index == -1:
        pp_red("outputs are missing")
Y
Yanzhan Yang 已提交
512
    else:
Y
Yanzhan Yang 已提交
513 514
        error_values1 = np.array(error_values1)
        error_values2 = np.array(error_values2)
Y
Yanzhan Yang 已提交
515
        # pp_red("mobile op is not correct, error occurs at {}th op, op's type is {}")
516
        pp_red("outputs are incorrect", 1)
Y
Yanzhan Yang 已提交
517 518
        pp_red("fluid results are : ", 1)
        pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
Z
zp7 已提交
519
        pp_yellow("paddle mobile results are : ", 1)
Y
Yanzhan Yang 已提交
520
        pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        if not fuse and not mem_opt:
            pp_yellow("checking individual ops : ", 1)
            error_index = None
            error_values1 = None
            error_values2 = None
            checked_names = []
            fetch_names = []
            for fetch in fetches:
                fetch_names.append(fetch.name)
            for index in op_cache:
                op_output_var_name, op = op_cache[index]
                if mem_opt:
                    found_in_fetch = False
                    for fetch in fetches:
                        if op_output_var_name == fetch.name:
                            found_in_fetch = True
                            break
                    if not found_in_fetch:
                        continue
                if not op_output_var_name in output_var_cache:
541
                    continue
542
                if not op_output_var_name in mobile_var_cache:
543
                    continue
544 545 546 547 548 549 550
                if fuse or mem_opt:
                    if op_output_var_name not in fetch_names:
                        continue
                values1 = output_var_cache[op_output_var_name]
                values2 = mobile_var_cache[op_output_var_name]
                shape = get_var_shape(op_output_var_name) if check_shape else []
                if len(values1) + len(shape) != len(values2):
551
                    error_index = index
552 553 554 555
                for i in range(len(shape)):
                    v1 = shape[i]
                    v2 = values2[i]
                    if v1 != v2:
556 557
                        error_index = index
                        break
558 559 560 561
                if error_index == None:
                    for i in range(len(values1)):
                        v1 = values1[i]
                        v2 = values2[len(shape) + i]
562
                        if ((not math.isnan(v1)) and math.isnan(v2)) or abs(v1 - v2) > diff_threshold:
563 564 565 566 567 568
                            error_index = index
                            break
                checked_names.append(op_output_var_name)
                if error_index != None:
                    error_values1 = values1
                    error_values2 = values2
569
                    break
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
            if error_index == None:
                for name in fetch_names:
                    if name not in checked_names:
                        error_index = -1
                        break
            if error_index == None:
                pp_green("outputs are all correct", 1)
            elif error_index == -1:
                pp_red("outputs are missing")
            else:
                error_values1 = np.array(error_values1)
                error_values2 = np.array(error_values2)
                # pp_red("mobile op is not correct, error occurs at {}th op, op's type is {}")
                pp_red("corresponding fluid op is {}th op, op's type is {}, wrong var name is {}".format(
                    error_index,op_cache[error_index][1].type,op_output_var_name), 1)
                pp_red("fluid results are : ", 1)
                pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
                pp_yellow("paddle mobile results are : ", 1)
                pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
Y
Yanzhan Yang 已提交
589 590 591 592 593 594
    # print(output_var_cache)
    # print(mobile_var_cache)

def main():
    # 加载kv
    feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
595 596 597 598
    if feed_kv == None:
        feed_kv = gen_feed_kv()
        save_feed_kv(feed_kv)
        feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
599 600 601 602 603 604
    # 预测
    pp_yellow(dot + dot + " checking inference")
    outputs = run_model(feed_kv=feed_kv)
    pp_tab("fluid output : {}".format(outputs), 1)
    # 重新保存模型
    pp_yellow(dot + dot + " checking model correctness")
605
    resave_model(feed_kv=feed_kv)
Z
zp7 已提交
606 607
    # 输出加密模型
    encrypt_model()
Y
Yanzhan Yang 已提交
608 609 610
    # 输出所有中间结果
    pp_yellow(dot + dot + " checking output result of every op")
    save_all_op_output(feed_kv=feed_kv)
611 612 613 614 615
    pp_yellow(dot + dot + " checking fetch info")
    for fetch in fetches:
        fetch_name = fetch.name
        fetch_shape = get_var_shape(fetch_name)
        pp_tab("fetch var name : {}; fetch var shape : {}".format(fetch_name, fetch_shape), 1)
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    # 输出所有op、var信息
    info_file = open("info.txt", "w")
    for i in range(len(ops)):
        op = ops[i]
        info_file.write("{}th op: type - {}\n".format(i, op.type))
        info_file.write("inputs:\n")
        for var_name in op.input_arg_names:
            try:
                shape = get_var_shape(var_name)
                shape_str = ", ".join(list(map(lambda x: str(x), shape)))
                info_file.write("var {} : {}\n".format(var_name, shape_str))
            except:
                pass
        info_file.write("outputs:\n")
        for var_name in op.output_arg_names:
            try:
                shape = get_var_shape(var_name)
                shape_str = ", ".join(list(map(lambda x: str(x), shape)))
                info_file.write("var {} : {}\n".format(var_name, shape_str))
            except:
                pass
    info_file.close()
Y
Yanzhan Yang 已提交
638 639 640 641 642 643 644
    # 开始检查mobile的正确性
    print("")
    print("==================================================")
    print("")
    pp_yellow(dot + " start inspecting paddle mobile correctness & performance")
    push(checked_model_path)
    push(feed_path + "/" + last_feed_file_name, "input.txt")
645 646
    push(mobile_src_root + "/build/release/{}/build/libpaddle-mobile.so".format(architecture))
    push(mobile_src_root + "/build/release/{}/build/cl_kernel".format(architecture))
Y
Yanzhan Yang 已提交
647
    push(mobile_src_root + "/test/build/test-net")
648
    last_feed_var_shape = get_feed_var_shape(last_feed_var_name)
Y
Yanzhan Yang 已提交
649 650 651
    args = str(len(last_feed_var_shape))
    for dim in last_feed_var_shape:
        args += " " + str(dim)
652 653 654 655 656 657 658
    if is_lod:
        args += " 1"
        args += " " + str(len(last_feed_var_lod))
        for dim in last_feed_var_lod:
            args += " " + str(dim)
    else:
        args += " 0"
Y
Yanzhan Yang 已提交
659
    args += " " + str(len(output_var_cache))
660 661 662 663 664
    args += " " + str(1 if is_sample_step else 0)
    if is_sample_step:
        args += " " + str(sample_step)
    else:
        args += " " + str(sample_num)
Y
Yanzhan Yang 已提交
665 666
    for var_name in output_var_cache.keys():
        args += " " + var_name
667
    args += " " + str(1 if check_shape else 0)
Y
Yanzhan Yang 已提交
668 669 670
    if not fast_check:
        check_mobile_results(args, False, False)
        check_mobile_results(args, False, True)
Y
Yanzhan Yang 已提交
671 672
    check_mobile_results(args, True, False)
    check_mobile_results(args, True, True)
Y
Yanzhan Yang 已提交
673 674 675

if __name__ == "__main__":
    main()