run.py 19.8 KB
Newer Older
Y
Yanzhan Yang 已提交
1
# -*- coding: utf-8 -*
Y
Yanzhan Yang 已提交
2 3 4 5 6 7 8 9 10 11 12
import os
import sys
import math
import subprocess
import numpy as np
import paddle.fluid as fluid

model_path = "model"
checked_model_path = "checked_model"
feed_path = "feeds"
output_path = "outputs"
Y
Yanzhan Yang 已提交
13
diff_threshold = 0.01
Y
Yanzhan Yang 已提交
14 15
is_lod = False
mobile_model_path = ""
Y
Yanzhan Yang 已提交
16
fast_check = False
17 18 19
is_sample_step = False
sample_step = 1
sample_num = 20
Z
zp7 已提交
20 21
need_encrypt = False
checked_encrypt_model_path = "checked_encrypt_model"
22 23 24
output_var_filter = []
output_key_filter = {}
check_shape = False
Y
Yanzhan Yang 已提交
25 26

np.set_printoptions(linewidth=150)
Y
Yanzhan Yang 已提交
27 28 29 30 31 32 33

mobile_exec_root = "/data/local/tmp/bin"
mobile_src_root = os.path.abspath("../../../")
if mobile_src_root.endswith("/"):
    mobile_src_root = mobile_src_root[:-1]

dot = "•"
Y
Yanzhan Yang 已提交
34 35 36 37
black = lambda x: "\033[30m" + str(x) + "\033[0m"
red = lambda x: "\033[31m" + str(x) + "\033[0m"
green = lambda x: "\033[32m" + str(x) + "\033[0m"
yellow = lambda x: "\033[33m" + str(x) + "\033[0m"
Y
Yanzhan Yang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
reset = lambda x: "\033[0m" + str(x)

def pp_tab(x, level=0):
    header = ""
    for i in range(0, level):
        header += "\t"
    print(header + str(x))
def pp_black(x, level=0):
    pp_tab(black(x) + reset(""), level)
def pp_red(x, level=0):
    pp_tab(red(x) + reset(""), level)
def pp_green(x, level=0):
    pp_tab(green(x) + reset(""), level)
def pp_yellow(x, level=0):
    pp_tab(yellow(x) + reset(""), level)

def sh(command):
    pipe = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
    return pipe.stdout.read().decode("utf-8")
def push(src, dest=""):
    sh("adb push {} {}".format(src, mobile_exec_root + "/" + dest))

pp_yellow(dot + " start inspecting fluid model")

exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())

# 加载模型
def load_model(model_path):
    prog, feeds, fetches = fluid.io.load_inference_model(dirname=model_path, executor=exe, model_filename="model", params_filename="params")
    return (prog, feeds, fetches)

prog, feeds, fetches = load_model(model_path)

# 强制要求所有张量的形状,在model和params中一致,并重新保存模型
73
def resave_model(feed_kv):
Y
Yanzhan Yang 已提交
74 75 76 77
    if len(mobile_model_path) > 0:
        pp_green("has set mobile_model_path, stop checking model & params", 1)
        sh("cp {}/* {}".format(mobile_model_path, checked_model_path))
        return
Y
Yanzhan Yang 已提交
78 79 80 81 82
    ops = prog.current_block().ops
    vars = prog.current_block().vars
    # 强制所有var为可持久化
    p_names = []
    for name in vars:
Y
Yanzhan Yang 已提交
83
        name = str(name)
Y
Yanzhan Yang 已提交
84 85 86 87
        v = fluid.framework._get_var(name, prog)
        if not v.persistable:
            v.persistable = True
            p_names.append(name)
88
    outputs = run_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
89 90 91
    has_found_wrong_shape = False
    # 修正每个var的形状
    for name in vars:
Y
Yanzhan Yang 已提交
92
        name = str(name)
Y
Yanzhan Yang 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        v = vars[name]
        if v.persistable:
            v1 = fluid.global_scope().find_var(name)
            try:
                t1 = v1.get_tensor()
                shape = t1.shape()
            except:
                continue
            if v.desc.shape() != shape:
                has_found_wrong_shape = True
            v.desc.set_shape(shape)
    # 恢复var的可持久化属性
    for name in p_names:
        v = fluid.framework._get_var(name, prog)
        v.persistable = False
    fluid.io.save_inference_model(dirname=checked_model_path, feeded_var_names=feeds, target_vars=fetches, executor=exe, main_program=prog, model_filename="model", params_filename="params")
    if has_found_wrong_shape:
        pp_red("has found wrong shape", 1)
    else:
        pp_green("has not found wrong shape", 1)
    pp_green("new model is saved into directory 【{}】".format(checked_model_path), 1)

Z
zp7 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
# 分别加密model和params,加密key使用同一个
def encrypt_model():
    if not need_encrypt:
        return
    pp_yellow(dot + dot + " encrypting model")
    if not os.path.exists(checked_encrypt_model_path):
        os.mkdir(checked_encrypt_model_path)
    res = sh("model-encrypt-tool/enc_key_gen -l 20 -c 232")
    lines = res.split("\n")

    for line in lines:
        if line.startswith("key:"):
            line = line.replace('key:','')
            sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/model -o "
               "checked_model/model.ml".format(line))
            sh("model-encrypt-tool/enc_model_gen -k '{}' -c 2 -i checked_model/params  -o checked_model/params.ml".format(line))
            pp_green("model has been encrypted, key is : {}".format(line), 1)
            sh("mv {} {}".format(checked_model_path + "/*.ml", checked_encrypt_model_path))
            return
    pp_red("model encrypt error", 1)

Y
Yanzhan Yang 已提交
136 137 138 139
# 生成feed的key-value对
def gen_feed_kv():
    feed_kv = {}
    for feed_name in feeds:
140
        feed_shape = get_feed_var_shape(feed_name)
Y
Yanzhan Yang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
        data = np.random.random(feed_shape).astype("float32")
        feed_kv[feed_name] = data
    return feed_kv

# 保存feed的key-value对
def save_feed_kv(feed_kv):
    for feed_name in feed_kv:
        feed_data = feed_kv[feed_name]
        feed_list = feed_data.flatten().tolist()
        if not os.path.exists(feed_path):
            os.mkdir(feed_path)
        file_name = feed_name.replace("/", "_")
        out_file = open(feed_path + "/" + file_name, "w")
        for feed_item in feed_list:
            out_file.write("{}\n".format(feed_item))
        out_file.close()

last_feed_var_name = None
last_feed_file_name = None
160
last_feed_var_lod = None
Y
Yanzhan Yang 已提交
161 162
# 加载feed的key-value对
def load_feed_kv():
Y
Yanzhan Yang 已提交
163 164
    if not os.path.exists(feed_path):
        return None
Y
Yanzhan Yang 已提交
165 166
    global last_feed_var_name
    global last_feed_file_name
167
    global last_feed_var_lod
Y
Yanzhan Yang 已提交
168 169 170 171
    feed_kv = {}
    pp_yellow(dot + dot + " checking feed info")
    pp_green("feed data is saved into directory 【{}】".format(feed_path), 1)
    for feed_name in feeds:
172
        feed_shape = get_feed_var_shape(feed_name)
Y
Yanzhan Yang 已提交
173 174 175 176
        pp_tab("feed var name : {}; feed var shape : {}".format(feed_name, feed_shape), 1)
        file_name = feed_name.replace("/", "_")
        last_feed_var_name = feed_name
        last_feed_file_name = file_name
Y
Yanzhan Yang 已提交
177 178 179 180 181 182 183
        feed_file_path = feed_path + "/" + file_name
        if not os.path.exists(feed_file_path):
            return None
        data = np.loadtxt(feed_file_path)
        expected_len = 1
        for dim in feed_shape:
            expected_len *= dim
184
        if len(np.atleast_1d(data)) != expected_len:
Y
Yanzhan Yang 已提交
185 186
            return None
        data = data.reshape(feed_shape).astype("float32")
187 188
        
        if is_lod:
189 190 191 192
            data_shape = [1]
            for dim in feed_shape:
                data_shape.append(dim)
            data = data.reshape(data_shape).astype("float32")
193 194 195 196 197
            tensor = fluid.LoDTensor()
            seq_lens = [len(seq) for seq in data]
            cur_len = 0
            lod = [cur_len]
            for l in seq_lens:
Y
Yanzhan Yang 已提交
198
                cur_len += l
199 200 201 202 203 204 205 206
                lod.append(cur_len)
            data = data.reshape(feed_shape)
            tensor.set(data, fluid.CPUPlace())
            tensor.set_lod([lod])
            last_feed_var_lod = lod
            feed_kv[feed_name] = tensor
        else:
            feed_kv[feed_name] = data
Y
Yanzhan Yang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
    return feed_kv

# 运行模型
def run_model(feed_kv=None):
    if feed_kv is None:
        feed_kv = gen_feed_kv()
    outputs = exe.run(prog, feed=feed_kv, fetch_list=fetches, return_numpy=False)
    results = []
    for output in outputs:
        results.append(np.array(output))
    return results

# 获取变量形状
def get_var_shape(var_name):
    vars = prog.current_block().vars
    shape = vars[var_name].desc.shape()
    for i in range(len(shape)):
        dim = shape[i]
        if dim == -1:
            shape[i] = 1
    return shape

229 230 231 232 233 234
# 获取输入变量形状
def get_feed_var_shape(var_name):
    # 如果想写死输入形状,放开以下语句
    # return [1, 3, 224, 224]
    return get_var_shape(var_name)

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
persistable_cache = []
# 所有var,全部变成持久化
def force_all_vars_to_persistable():
    global persistable_cache
    for var_name in vars.keys():
        var_name = str(var_name)
        v = fluid.framework._get_var(var_name, prog)
        persistable = v.persistable
        if not persistable:
            persistable_cache.append(var_name)
            v.persistable = True

# 恢复持久化属性
def restore_all_vars_persistable():
    global persistable_cache
    for var_name in vars.keys():
        var_name = str(var_name)
        v = fluid.framework._get_var(var_name, prog)
        persistable = v.persistable
        if var_name in persistable_cache:
            v.persistable = False
    persistable_cache = []

Y
Yanzhan Yang 已提交
258 259
# 获取var的数据
def get_var_data(var_name, feed_kv=None):
260
    output = np.array(fluid.global_scope().var(var_name).get_tensor())
Y
Yanzhan Yang 已提交
261 262 263 264
    return output

output_var_cache = {}
def tensor_sample(tensor):
265 266 267 268 269
    if is_sample_step:
        step = sample_step
    else:
        step = math.floor(len(tensor) / sample_num)
    step = max(step, 1)
270
    step = int(step)
Y
Yanzhan Yang 已提交
271
    sample = []
272
    for i in range(0, len(tensor), step):
Y
Yanzhan Yang 已提交
273 274 275
        sample.append(tensor[i])
    return sample

276
op_cache = {}
Y
Yanzhan Yang 已提交
277 278
# 获取每层输出的数据
def save_all_op_output(feed_kv=None):
279 280
    force_all_vars_to_persistable()
    outputs = run_model(feed_kv=feed_kv)
Y
Yanzhan Yang 已提交
281 282 283
    if not os.path.exists(output_path):
        os.mkdir(output_path)
    ops = prog.current_block().ops
Y
Yanzhan Yang 已提交
284 285 286
    fetch_names = []
    for fetch in fetches:
        fetch_names.append(fetch.name)
Y
Yanzhan Yang 已提交
287
    feed_names = feeds
288 289
    for fetch_name in fetch_names:
        output_var_filter.append(fetch_name)
Y
Yanzhan Yang 已提交
290 291 292
    for i in range(len(ops)):
        op = ops[i]
        var_name = None
293 294 295 296
        var_name_index = -1
        for index in range(len(op.output_names)):
            if op.output_names[index] in ["Y", "Out", "Output"]:
                var_name_index = index
Y
Yanzhan Yang 已提交
297
                break
298 299 300 301 302 303 304
        if var_name_index != -1:
            var_name = op.output_arg_names[var_name_index]
        else:
            for name in op.output_arg_names:
                var_name = name
                if "tmp" in name:
                    break
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        if len(output_var_filter) > 0:
            if var_name not in output_var_filter:
                continue
        # real_var_name = None
        # if op.type == "fetch":
        #     for name in op.input_arg_names:
        #         real_var_name = name
        #         if "tmp" in name:
        #             break
        # else:
        #     real_var_name = var_name
        if fast_check:
            if var_name not in fetch_names and var_name not in feed_names:
                continue
        try:
            data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
            sample = tensor_sample(data)
            output_var_cache[var_name] = (sample)
            op_cache[i] = (var_name, op)
            file_name = var_name.replace("/", "_")
            out_file = open(output_path + "/" + file_name, "w")
            if var_name in feed_names:
                for item in data:
                    out_file.write("{}\n".format(item))
            else:
                for item in sample:
                    out_file.write("{}\n".format(item))
            out_file.close()
        except:
            pass
    for i in range(len(ops)):
        op = ops[i]
        if op.type not in output_key_filter:
            continue
        var_name = None
        var_name_index = -1
        for index in range(len(op.output_names)):
            if op.output_names[index] in output_key_filter[op.type]:
                var_name_index = index
                break
        if var_name_index != -1:
            var_name = op.output_arg_names[var_name_index]
        else:
            continue
        if len(output_var_filter) > 0:
            if var_name not in output_var_filter:
                continue
352 353 354 355 356 357 358 359
        # real_var_name = None
        # if op.type == "fetch":
        #     for name in op.input_arg_names:
        #         real_var_name = name
        #         if "tmp" in name:
        #             break
        # else:
        #     real_var_name = var_name
Y
Yanzhan Yang 已提交
360
        if fast_check:
Y
Yanzhan Yang 已提交
361
            if var_name not in fetch_names and var_name not in feed_names:
Y
Yanzhan Yang 已提交
362
                continue
Y
Yanzhan Yang 已提交
363 364 365 366 367 368 369
        try:
            data = get_var_data(var_name, feed_kv=feed_kv).flatten().tolist()
            sample = tensor_sample(data)
            output_var_cache[var_name] = (sample)
            op_cache[i] = (var_name, op)
            file_name = var_name.replace("/", "_")
            out_file = open(output_path + "/" + file_name, "w")
370 371 372 373 374 375
            if var_name in feed_names:
                for item in data:
                    out_file.write("{}\n".format(item))
            else:
                for item in sample:
                    out_file.write("{}\n".format(item))
Y
Yanzhan Yang 已提交
376 377 378 379
            out_file.close()
        except:
            pass
    pp_green("all the op outputs are saved into directory 【{}】".format(output_path), 1)
380
    restore_all_vars_persistable()
Y
Yanzhan Yang 已提交
381 382 383 384 385 386 387 388 389 390

ops = prog.current_block().ops
vars = prog.current_block().vars

pp_yellow(dot + dot + " checking op list")
op_types = set()
for op in ops:
    op_types.add(op.type)
pp_tab("op types : {}".format(op_types), 1)

Y
Yanzhan Yang 已提交
391 392 393 394
def check_mobile_results(args, fuse, mem_opt):
    args = "{} {} {}".format("1" if fuse else "0", "1" if mem_opt else "0", args)
    res = sh("adb shell \"cd {} && export LD_LIBRARY_PATH=. && ./test-net {}\"".format(mobile_exec_root, args))
    lines = res.split("\n")
Y
Yanzhan Yang 已提交
395 396
    # for line in lines:
    #     print(line)
Y
Yanzhan Yang 已提交
397 398 399 400
    for line in lines:
        if line.startswith("auto-test-debug"):
            print(line)
    pp_yellow(dot + dot + " checking paddle mobile results for {} -- {} ".format(green("【fusion】" if fuse else "【non fusion】"), green("【memory-optimization】" if mem_opt else "【non-memory-optimization】")))
Y
Yanzhan Yang 已提交
401 402 403
    mobile_var_cache = {}
    for line in lines:
        parts = line.split(" ")
Y
Yanzhan Yang 已提交
404 405 406
        if len(parts) < 2:
            continue
        if "auto-test" != parts[0]:
Y
Yanzhan Yang 已提交
407 408 409 410 411
            continue
        if parts[1] == "load-time-cost":
            pp_green("load time cost : {}".format(parts[2]), 1) 
        elif parts[1] == "predict-time-cost":
            pp_green("predict time cost : {}".format(parts[2]), 1) 
412 413
        elif parts[1] == "preprocess-time-cost":
            pp_green("preprocess time cost : {}".format(parts[2]), 1)
Y
Yanzhan Yang 已提交
414 415 416 417 418 419 420
        elif parts[1] == "var":
            var_name = parts[2]
            values = list(map(lambda x: float(x), parts[3:]))
            mobile_var_cache[var_name] = values
    error_index = None
    error_values1 = None
    error_values2 = None
Y
Yanzhan Yang 已提交
421 422 423 424
    checked_names = []
    fetch_names = []
    for fetch in fetches:
        fetch_names.append(fetch.name)
Y
Yanzhan Yang 已提交
425 426
    for index in op_cache:
        op_output_var_name, op = op_cache[index]
Y
Yanzhan Yang 已提交
427 428 429 430 431 432 433 434
        if mem_opt:
            found_in_fetch = False
            for fetch in fetches:
                if op_output_var_name == fetch.name:
                    found_in_fetch = True
                    break
            if not found_in_fetch:
                continue
Y
Yanzhan Yang 已提交
435 436 437 438 439 440
        if not op_output_var_name in output_var_cache:
            continue
        if not op_output_var_name in mobile_var_cache:
            continue
        values1 = output_var_cache[op_output_var_name]
        values2 = mobile_var_cache[op_output_var_name]
441 442
        shape = get_var_shape(op_output_var_name) if check_shape else []
        if len(values1) + len(shape) != len(values2):
Y
Yanzhan Yang 已提交
443
            error_index = index
444 445 446 447 448 449
        for i in range(len(shape)):
            v1 = shape[i]
            v2 = values2[i]
            if v1 != v2:
                error_index = index
                break
Y
Yanzhan Yang 已提交
450 451 452
        if error_index == None:
            for i in range(len(values1)):
                v1 = values1[i]
453
                v2 = values2[len(shape) + i]
Y
Yanzhan Yang 已提交
454
                if abs(v1 - v2) > diff_threshold:
Y
Yanzhan Yang 已提交
455 456
                    error_index = index
                    break
Y
Yanzhan Yang 已提交
457
        checked_names.append(op_output_var_name)
Y
Yanzhan Yang 已提交
458 459 460 461
        if error_index != None:
            error_values1 = values1
            error_values2 = values2
            break
Y
Yanzhan Yang 已提交
462 463 464 465 466
    if error_index == None:
        for name in fetch_names:
            if name not in checked_names:
                error_index = -1
                break
Y
Yanzhan Yang 已提交
467 468
    if error_index == None:
        pp_green("outputs are all correct", 1)
Y
Yanzhan Yang 已提交
469 470
    elif error_index == -1:
        pp_red("outputs are missing")
Y
Yanzhan Yang 已提交
471
    else:
Y
Yanzhan Yang 已提交
472 473
        error_values1 = np.array(error_values1)
        error_values2 = np.array(error_values2)
Y
Yanzhan Yang 已提交
474
        # pp_red("mobile op is not correct, error occurs at {}th op, op's type is {}")
Z
zp7 已提交
475 476
        pp_red("corresponding fluid op is {}th op, op's type is {}, wrong var name is {}".format(
            error_index,op_cache[error_index][1].type,op_output_var_name), 1)
Y
Yanzhan Yang 已提交
477 478
        pp_red("fluid results are : ", 1)
        pp_red(str(error_values1).replace("\n", "\n" + "\t" * 1), 1)
Z
zp7 已提交
479
        pp_yellow("paddle mobile results are : ", 1)
Y
Yanzhan Yang 已提交
480
        pp_red(str(error_values2).replace("\n", "\n" + "\t" * 1), 1)
Y
Yanzhan Yang 已提交
481 482 483 484 485 486
    # print(output_var_cache)
    # print(mobile_var_cache)

def main():
    # 加载kv
    feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
487 488 489 490
    if feed_kv == None:
        feed_kv = gen_feed_kv()
        save_feed_kv(feed_kv)
        feed_kv = load_feed_kv()
Y
Yanzhan Yang 已提交
491 492 493 494 495 496
    # 预测
    pp_yellow(dot + dot + " checking inference")
    outputs = run_model(feed_kv=feed_kv)
    pp_tab("fluid output : {}".format(outputs), 1)
    # 重新保存模型
    pp_yellow(dot + dot + " checking model correctness")
497
    resave_model(feed_kv=feed_kv)
Z
zp7 已提交
498 499
    # 输出加密模型
    encrypt_model()
Y
Yanzhan Yang 已提交
500 501 502
    # 输出所有中间结果
    pp_yellow(dot + dot + " checking output result of every op")
    save_all_op_output(feed_kv=feed_kv)
503 504 505 506 507
    pp_yellow(dot + dot + " checking fetch info")
    for fetch in fetches:
        fetch_name = fetch.name
        fetch_shape = get_var_shape(fetch_name)
        pp_tab("fetch var name : {}; fetch var shape : {}".format(fetch_name, fetch_shape), 1)
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
    # 输出所有op、var信息
    info_file = open("info.txt", "w")
    for i in range(len(ops)):
        op = ops[i]
        info_file.write("{}th op: type - {}\n".format(i, op.type))
        info_file.write("inputs:\n")
        for var_name in op.input_arg_names:
            try:
                shape = get_var_shape(var_name)
                shape_str = ", ".join(list(map(lambda x: str(x), shape)))
                info_file.write("var {} : {}\n".format(var_name, shape_str))
            except:
                pass
        info_file.write("outputs:\n")
        for var_name in op.output_arg_names:
            try:
                shape = get_var_shape(var_name)
                shape_str = ", ".join(list(map(lambda x: str(x), shape)))
                info_file.write("var {} : {}\n".format(var_name, shape_str))
            except:
                pass
    info_file.close()
Y
Yanzhan Yang 已提交
530 531 532 533 534 535 536 537
    # 开始检查mobile的正确性
    print("")
    print("==================================================")
    print("")
    pp_yellow(dot + " start inspecting paddle mobile correctness & performance")
    push(checked_model_path)
    push(feed_path + "/" + last_feed_file_name, "input.txt")
    push(mobile_src_root + "/build/release/arm-v7a/build/libpaddle-mobile.so")
538
    push(mobile_src_root + "/build/release/arm-v7a/build/cl_kernel")
Y
Yanzhan Yang 已提交
539
    push(mobile_src_root + "/test/build/test-net")
540
    last_feed_var_shape = get_feed_var_shape(last_feed_var_name)
Y
Yanzhan Yang 已提交
541 542 543
    args = str(len(last_feed_var_shape))
    for dim in last_feed_var_shape:
        args += " " + str(dim)
544 545 546 547 548 549 550
    if is_lod:
        args += " 1"
        args += " " + str(len(last_feed_var_lod))
        for dim in last_feed_var_lod:
            args += " " + str(dim)
    else:
        args += " 0"
Y
Yanzhan Yang 已提交
551
    args += " " + str(len(output_var_cache))
552 553 554 555 556
    args += " " + str(1 if is_sample_step else 0)
    if is_sample_step:
        args += " " + str(sample_step)
    else:
        args += " " + str(sample_num)
Y
Yanzhan Yang 已提交
557 558
    for var_name in output_var_cache.keys():
        args += " " + var_name
559
    args += " " + str(1 if check_shape else 0)
Y
Yanzhan Yang 已提交
560 561 562
    if not fast_check:
        check_mobile_results(args, False, False)
        check_mobile_results(args, False, True)
Y
Yanzhan Yang 已提交
563 564
    check_mobile_results(args, True, False)
    check_mobile_results(args, True, True)
Y
Yanzhan Yang 已提交
565 566 567

if __name__ == "__main__":
    main()