conv_add_kernel.cpp 7.7 KB
Newer Older
H
Hao Han 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
S
sharper 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"
#ifdef PADDLE_MOBILE_MALI_GPU
#include "acl_operator.h"
#include "framework/operator.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

template <typename DeviceType, typename T>
class AclConvAddOp : public acl::ACLOperator {
 public:
  AclConvAddOp() {
    this->force_bypass_acl_path_ =
        bypass_acl_class_layer & FLAGS_ENABLE_ACL_CONV;
  }
  ~AclConvAddOp() = default;
  AclConvAddOp(const AclConvAddOp&) = delete;
  AclConvAddOp& operator=(const AclConvAddOp&) = delete;
  AclConvAddOp(AclConvAddOp&&) = delete;
  AclConvAddOp& operator=(AclConvAddOp&&) = delete;

  acl::AclParameters& getargs() { return args; }
N
nhzlx 已提交
40
  void InitAclLayer(const FusionConvAddParam<DeviceType>& param) {
S
sharper 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    setTargetHint(acl::TargetHint::OPENCL);
    arm_compute::TensorShape input_shape(args.in_cols, args.in_rows,
                                         args.in_depth, args.batch);
    arm_compute::TensorShape output_shape(args.out_cols, args.out_rows,
                                          args.out_depth, args.out_num);
    arm_compute::TensorShape weights_shape(args.filter_cols, args.filter_rows,
                                           args.in_depth / args.num_group,
                                           args.out_depth);
    arm_compute::TensorShape biases_shape(args.out_depth);
    arm_compute::PadStrideInfo conv_info(
        args.stride_cols, args.stride_rows, args.pad_cols, args.pad_rows,
        arm_compute::DimensionRoundingType::FLOOR);

    if (is_operator_init_done(input_shape)) return;
    set_operator_init_done();
    this->force_bypass_acl_path_ = false;

H
Hao Han 已提交
58 59
    // check_direct_conv();
    group() = args.num_group;
S
sharper 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    //[kernel_x, kernel_y, IFM, OFM]
    new_tensor(weights(), weights_shape, args.weight_data);
    //[OFM]
    if (args.biases_data) {
      new_tensor(biases(), biases_shape, args.biases_data);
    }

    //[width, height, IFM]
    new_tensor(input(), input_shape, args.input_data);
    //[width, height, OFM]
    new_tensor(output(), output_shape, args.output_data);

    acl_configure(conv, this, conv_info);
  }

  void RunAcl(void* input, void* output) {
    acl::ACLOperator::acl_run(input, output);
  }
N
nhzlx 已提交
78
  bool Bypass_acl(const FusionConvAddParam<DeviceType>& param) {
S
sharper 已提交
79 80
    bool bypass_acl = false;
    AclParametersByContext(param);
H
Hao Han 已提交
81
    InitAclLayer(param);
S
sharper 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
    // for performance, more groups impact GPU performance
    if (this->force_bypass_acl_path_ || args.num_group >= 5) {
      bypass_acl = true;
    }
    if (args.dim > 2) {
      bypass_acl = true;
    }
    if (args.dilated) {
      bypass_acl = true;
    }
    return bypass_acl;
  }

 private:
  void check_direct_conv() {
    bool use_direct_conv = false;
    const char* pDirectConv;
    pDirectConv = getenv("DIRECTCONV");
    if (pDirectConv) {
      unsigned int bdirectconv;
      sscanf(pDirectConv, "%i", &bdirectconv);
      if (bdirectconv != use_direct_conv) {
        use_direct_conv = bdirectconv;
        printf("DIRECTCONV<%s>\n", pDirectConv);
        printf("DIRECTCONV: %x\n", use_direct_conv);
      }
    }
    int pad_data[2], kernel[2];
    pad_data[1] = args.pad_rows;
    pad_data[0] = args.pad_cols;
    kernel[1] = args.filter_rows;
    kernel[0] = args.filter_cols;
    if (use_direct_conv && ((kernel[0] == 1 && kernel[1] == 1 &&
                             pad_data[0] == 0 && pad_data[1] == 0) ||
                            (kernel[0] == 3 && kernel[1] == 3 &&
                             pad_data[0] <= 1 && pad_data[1] <= 1))) {
      setConvMethod();  // NEDirectConvolutionLayer only for 1x1 and 3x3
    }
  }

N
nhzlx 已提交
122
  void AclParametersByContext(const FusionConvAddParam<DeviceType>& param) {
S
sharper 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    const Tensor* input = param.Input();
    Tensor filter = *param.Filter();
    Tensor* output = param.Output();
    Tensor* bias;

    int groups = param.Groups();
    std::vector<int> strides = param.Strides();
    std::vector<int> paddings = param.Paddings();
    std::vector<int> dilations = param.Dilations();

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>();
    const T* weight_data = filter.data<T>();

    args.input_data = (void*)input_data;
    args.output_data = (void*)output_data;
    args.weight_data = (void*)weight_data;
    args.biases_data = nullptr;

    try {
      bias = param.Bias();
    } catch (const std::exception& e) {
    }
    if (bias) {
      const T* biases_data = bias->data<T>();
      args.biases_data = (void*)biases_data;
    }

    args.num_group = groups;

    args.dilation_rows = dilations[0];
    args.dilation_cols = dilations[1];
    if (dilations[0] != 1 || dilations[1] != 1) {
      args.dilated = true;
    }

    // NCHW
    // std::cout << "In dims: " << (input->dims()).size() << std::endl;
    args.batch = input->dims()[0];
    args.in_depth = input->dims()[1];
    args.in_rows = input->dims()[2];
    args.in_cols = input->dims()[3];
    // std::cout <<"In N: " << args.batch << " C: " <<  args.in_depth
    //  << " H: " << args.in_rows << " W: " << args.in_cols << "\n";
    // NCHW
    // std::cout << "Out dims: " << (output->dims()).size() << std::endl;
    args.out_num = output->dims()[0];
    args.out_depth = output->dims()[1];
    args.out_rows = output->dims()[2];
    args.out_cols = output->dims()[3];
    // std::cout <<"Out N: " << static_cast<int>(output->dims()[0])
    //  << " C: " <<  args.out_depth
    //  << " H: " << args.out_rows << " W: " << args.out_cols << "\n";
    // MCHW = OIHW
    args.filter_rows = filter.dims()[2];
    args.filter_cols = filter.dims()[3];
    // std::cout <<"Filter O: " << static_cast<int>(filter.dims()[0])
    //  << " I: " <<  static_cast<int>(filter.dims()[1])
    //  << " H: " << args.filter_rows << " W: " << args.filter_cols << "\n";

    // strides(h_stride, w_stride)
    args.stride_rows = strides[0];
    args.stride_cols = strides[1];
    // std::cout <<"Stride H: " << args.stride_rows << " W: " <<
    // args.stride_cols << "\n";

    // paddings(h_pad, w_pad)
    args.pad_rows = paddings[0];
    args.pad_cols = paddings[1];
    // std::cout <<"Pad H: " << args.pad_rows << " W: " << args.pad_cols <<
    // "\n";
  }
  acl::AclParameters args;
};

template <>
N
nhzlx 已提交
199
bool ConvAddKernel<GPU_MALI, float>::Init(FusionConvAddParam<GPU_MALI>* param) {
S
sharper 已提交
200 201 202 203 204 205
  AclConvAddOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclConvAddOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    acl_op = new AclConvAddOp<GPU_MALI, float>();
    this->SetAclOp((void*)acl_op, (void*)this);
  }
H
halsay 已提交
206
  if (acl_op->Bypass_acl(*param)) {
H
Hao Han 已提交
207 208 209
    std::cout << "init acl failed" << std::endl;
    return false;
  }
S
sharper 已提交
210 211 212 213 214
  return true;
}

template <>
void ConvAddKernel<GPU_MALI, float>::Compute(
N
nhzlx 已提交
215
    const FusionConvAddParam<GPU_MALI>& param) const {
S
sharper 已提交
216 217 218 219 220 221 222
  std::cout << "init acl" << std::endl;
  AclConvAddOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclConvAddOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    return;
  }
  acl::AclParameters& args = acl_op->getargs();
H
Hao Han 已提交
223 224

  acl_op->RunAcl(args.input_data, args.output_data);
S
sharper 已提交
225 226 227 228 229 230 231 232
}

template class ConvAddKernel<GPU_MALI, float>;
}  // namespace operators
}  // namespace paddle_mobile

#endif
#endif