conv_add_kernel.cpp 7.8 KB
Newer Older
S
sharper 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADD_OP

#include "operators/kernel/conv_add_kernel.h"
#ifdef PADDLE_MOBILE_MALI_GPU
#include "acl_operator.h"
#include "framework/operator.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

template <typename DeviceType, typename T>
class AclConvAddOp : public acl::ACLOperator {
 public:
  AclConvAddOp() {
    this->force_bypass_acl_path_ =
        bypass_acl_class_layer & FLAGS_ENABLE_ACL_CONV;
  }
  ~AclConvAddOp() = default;
  AclConvAddOp(const AclConvAddOp&) = delete;
  AclConvAddOp& operator=(const AclConvAddOp&) = delete;
  AclConvAddOp(AclConvAddOp&&) = delete;
  AclConvAddOp& operator=(AclConvAddOp&&) = delete;

  acl::AclParameters& getargs() { return args; }
  void InitAclLayer(const FusionConvAddParam& param) {
    setTargetHint(acl::TargetHint::OPENCL);
    arm_compute::TensorShape input_shape(args.in_cols, args.in_rows,
                                         args.in_depth, args.batch);
    arm_compute::TensorShape output_shape(args.out_cols, args.out_rows,
                                          args.out_depth, args.out_num);
    arm_compute::TensorShape weights_shape(args.filter_cols, args.filter_rows,
                                           args.in_depth / args.num_group,
                                           args.out_depth);
    arm_compute::TensorShape biases_shape(args.out_depth);
    arm_compute::PadStrideInfo conv_info(
        args.stride_cols, args.stride_rows, args.pad_cols, args.pad_rows,
        arm_compute::DimensionRoundingType::FLOOR);

    if (is_operator_init_done(input_shape)) return;
    set_operator_init_done();
    this->force_bypass_acl_path_ = false;

    check_direct_conv();
    //[kernel_x, kernel_y, IFM, OFM]
    new_tensor(weights(), weights_shape, args.weight_data);
    //[OFM]
    if (args.biases_data) {
      new_tensor(biases(), biases_shape, args.biases_data);
    }

    group() = args.num_group;

    //[width, height, IFM]
    new_tensor(input(), input_shape, args.input_data);
    //[width, height, OFM]
    new_tensor(output(), output_shape, args.output_data);

    acl_configure(conv, this, conv_info);
  }

  void RunAcl(void* input, void* output) {
    acl::ACLOperator::acl_run(input, output);
  }
  bool Bypass_acl(const FusionConvAddParam& param) {
    bool bypass_acl = false;
    AclParametersByContext(param);
    // for performance, more groups impact GPU performance
    if (this->force_bypass_acl_path_ || args.num_group >= 5) {
      bypass_acl = true;
    }
    if (args.dim > 2) {
      bypass_acl = true;
    }
    if (args.dilated) {
      bypass_acl = true;
    }
    return bypass_acl;
  }

 private:
  void check_direct_conv() {
    bool use_direct_conv = false;
    const char* pDirectConv;
    pDirectConv = getenv("DIRECTCONV");
    if (pDirectConv) {
      unsigned int bdirectconv;
      sscanf(pDirectConv, "%i", &bdirectconv);
      if (bdirectconv != use_direct_conv) {
        use_direct_conv = bdirectconv;
        printf("DIRECTCONV<%s>\n", pDirectConv);
        printf("DIRECTCONV: %x\n", use_direct_conv);
      }
    }
    int pad_data[2], kernel[2];
    pad_data[1] = args.pad_rows;
    pad_data[0] = args.pad_cols;
    kernel[1] = args.filter_rows;
    kernel[0] = args.filter_cols;
    if (use_direct_conv && ((kernel[0] == 1 && kernel[1] == 1 &&
                             pad_data[0] == 0 && pad_data[1] == 0) ||
                            (kernel[0] == 3 && kernel[1] == 3 &&
                             pad_data[0] <= 1 && pad_data[1] <= 1))) {
      setConvMethod();  // NEDirectConvolutionLayer only for 1x1 and 3x3
    }
  }

  void AclParametersByContext(const FusionConvAddParam& param) {
    const Tensor* input = param.Input();
    Tensor filter = *param.Filter();
    Tensor* output = param.Output();
    Tensor* bias;

    int groups = param.Groups();
    std::vector<int> strides = param.Strides();
    std::vector<int> paddings = param.Paddings();
    std::vector<int> dilations = param.Dilations();

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>();
    const T* weight_data = filter.data<T>();

    args.input_data = (void*)input_data;
    args.output_data = (void*)output_data;
    args.weight_data = (void*)weight_data;
    args.biases_data = nullptr;

    try {
      bias = param.Bias();
    } catch (const std::exception& e) {
    }
    if (bias) {
      const T* biases_data = bias->data<T>();
      args.biases_data = (void*)biases_data;
    }

    args.num_group = groups;

    args.dilation_rows = dilations[0];
    args.dilation_cols = dilations[1];
    if (dilations[0] != 1 || dilations[1] != 1) {
      args.dilated = true;
    }

    // NCHW
    // std::cout << "In dims: " << (input->dims()).size() << std::endl;
    args.batch = input->dims()[0];
    args.in_depth = input->dims()[1];
    args.in_rows = input->dims()[2];
    args.in_cols = input->dims()[3];
    // std::cout <<"In N: " << args.batch << " C: " <<  args.in_depth
    //  << " H: " << args.in_rows << " W: " << args.in_cols << "\n";
    // NCHW
    // std::cout << "Out dims: " << (output->dims()).size() << std::endl;
    args.out_num = output->dims()[0];
    args.out_depth = output->dims()[1];
    args.out_rows = output->dims()[2];
    args.out_cols = output->dims()[3];
    // std::cout <<"Out N: " << static_cast<int>(output->dims()[0])
    //  << " C: " <<  args.out_depth
    //  << " H: " << args.out_rows << " W: " << args.out_cols << "\n";
    // MCHW = OIHW
    args.filter_rows = filter.dims()[2];
    args.filter_cols = filter.dims()[3];
    // std::cout <<"Filter O: " << static_cast<int>(filter.dims()[0])
    //  << " I: " <<  static_cast<int>(filter.dims()[1])
    //  << " H: " << args.filter_rows << " W: " << args.filter_cols << "\n";

    // strides(h_stride, w_stride)
    args.stride_rows = strides[0];
    args.stride_cols = strides[1];
    // std::cout <<"Stride H: " << args.stride_rows << " W: " <<
    // args.stride_cols << "\n";

    // paddings(h_pad, w_pad)
    args.pad_rows = paddings[0];
    args.pad_cols = paddings[1];
    // std::cout <<"Pad H: " << args.pad_rows << " W: " << args.pad_cols <<
    // "\n";
  }
  acl::AclParameters args;
};

template <>
bool ConvAddKernel<GPU_MALI, float>::Init(
    const FusionConvAddParam& param) const {
  AclConvAddOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclConvAddOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    acl_op = new AclConvAddOp<GPU_MALI, float>();
    this->SetAclOp((void*)acl_op, (void*)this);
  }
  return true;
}

template <>
void ConvAddKernel<GPU_MALI, float>::Compute(
    const FusionConvAddParam& param) const {
  std::cout << "init acl" << std::endl;
  AclConvAddOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclConvAddOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    return;
  }
  if (acl_op->Bypass_acl(param)) {
    std::cout << "init acl failed" << std::endl;
    return;
  }
  acl::AclParameters& args = acl_op->getargs();
  const float* input_data = (const float*)args.input_data;
  const float* output_data = (const float*)args.output_data;
  acl_op->InitAclLayer(param);
  acl_op->RunAcl((void*)input_data, (void*)output_data);
}

template class ConvAddKernel<GPU_MALI, float>;
}  // namespace operators
}  // namespace paddle_mobile

#endif
#endif