elementwise_ops.cc 5.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/elementwise_ops.h"
X
xiaogang 已提交
16 17
#include <algorithm>
#include <cmath>
Y
Yan Chunwei 已提交
18 19 20 21 22 23 24 25 26 27 28 29
#include "lite/core/op_registry.h"
namespace paddle {
namespace lite {
namespace operators {

bool ElementwiseOp::CheckShape() const {
  CHECK_OR_FALSE(param_.X);
  CHECK_OR_FALSE(param_.Y);
  CHECK_OR_FALSE(param_.Out);
  return true;
}

30
bool ElementwiseOp::InferShapeImpl() const {
X
xiaogang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  auto x_dim = param_.X->dims();
  auto y_dim = param_.Y->dims();
  if (x_dim == y_dim) {
    param_.Out->Resize(x_dim);
    auto out_lod = param_.Out->mutable_lod();
    *out_lod = param_.X->lod();
  } else {
    int max_dim = (x_dim.size() > y_dim.size() ? x_dim.size() : y_dim.size());
    int axis = param_.axis;
    axis = (axis == -1 ? std::abs(static_cast<int>(x_dim.size() - y_dim.size()))
                       : axis);
    std::vector<int64_t> x_dims_array(max_dim);
    std::vector<int64_t> y_dims_array(max_dim);
    std::vector<int64_t> out_dims_array(max_dim);

    if (x_dim.size() > y_dim.size()) {
      for (int i = 0; i < axis; ++i) {
        y_dims_array[i] = 1;
      }
      if (axis + y_dim.size() < max_dim) {
        for (int i = axis + y_dim.size(); i < max_dim; ++i) {
          y_dims_array[i] = 1;
        }
      }
      x_dims_array = x_dim.Vectorize();
      for (int i = 0; i < y_dim.size(); ++i) {
        y_dims_array[i + axis] = y_dim[i];
      }
    } else {
      for (int i = 0; i < axis; ++i) {
        x_dims_array[i] = 1;
      }
      if (axis + x_dim.size() < max_dim) {
        for (int i = axis + x_dim.size(); i < max_dim; ++i) {
          x_dims_array[i] = 1;
        }
      }
      y_dims_array = y_dim.Vectorize();
      for (int i = 0; i < x_dim.size(); ++i) {
        x_dims_array[i + axis] = x_dim[i];
      }
    }
    for (int i = 0; i < max_dim; i++) {
      if (x_dims_array[i] == -1 || y_dims_array[i] == -1) {
        out_dims_array[i] = -1;
      } else {
        out_dims_array[i] = std::max(x_dims_array[i], y_dims_array[i]);
      }
    }
    param_.Out->Resize(DDim(out_dims_array));
    auto out_lod = param_.Out->mutable_lod();
    *out_lod = param_.X->lod();
  }
X
xiaogang 已提交
84

Y
Yan Chunwei 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
  return true;
}

bool ElementwiseOp::AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) {
  auto X_name = opdesc.Input("X").front();
  auto Y_name = opdesc.Input("Y").front();
  auto Out_name = opdesc.Output("Out").front();

  param_.X = GetVar<lite::Tensor>(scope, X_name);
  param_.Y = GetVar<lite::Tensor>(scope, Y_name);
  param_.Out = GetMutableVar<lite::Tensor>(scope, Out_name);
  param_.axis = opdesc.GetAttr<int>("axis");
  return true;
}

M
mapingshuo 已提交
100 101 102 103 104 105 106
// #ifdef LITE_WITH_TRAIN
// bool ElementwiseGradExplicitOp::CheckShape() const {
//  CHECK_OR_FALSE(param_.Y);
//  CHECK_OR_FALSE(param_.X_grad);
//  CHECK_OR_FALSE(param_.Out_grad);
//  return true;
//}
Y
Yan Chunwei 已提交
107

108
// bool ElementwiseGradExplicitOp::InferShapeImpl() const {
M
mapingshuo 已提交
109 110 111 112
//   param_.X_grad->Resize(param_.Out_grad->dims());
//   if (param_.Y_grad) param_.Y_grad->Resize(param_.Y->dims());
//   return true;
// }
Y
Yan Chunwei 已提交
113

M
mapingshuo 已提交
114 115 116 117 118 119
// bool ElementwiseGradExplicitOp::AttachImpl(const cpp::OpDesc& opdesc,
//                                            lite::Scope* scope) {
//   CHECK_EQ(opdesc.InputArgumentNames().size(), 2UL);
//   auto Y_name = opdesc.Input("Y").front();
//   auto Out_name = opdesc.Input(framework::GradVarName("Out")).front();
//   auto X_grad = opdesc.Output(framework::GradVarName("X")).front();
Y
Yan Chunwei 已提交
120

M
mapingshuo 已提交
121 122 123 124 125 126 127 128
//   if (opdesc.Output(framework::GradVarName("Y")).size() > 0) {
//     auto Y_grad = opdesc.Output(framework::GradVarName("Y")).front();
//     param_.Y_grad = GetMutableVar<Tensor>(scope, Y_grad);
//   }
//   param_.Y = GetVar<lite::Tensor>(scope, Y_name);
//   param_.Out_grad = GetVar<lite::Tensor>(scope, Out_name);
//   param_.X_grad = GetMutableVar<lite::Tensor>(scope, X_grad);
//   param_.axis = opdesc.GetAttr<int>("axis");
Y
Yan Chunwei 已提交
129

M
mapingshuo 已提交
130 131 132
//   return true;
// }
// #endif
Y
Yan Chunwei 已提交
133 134 135 136 137 138 139 140 141 142

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(elementwise_sub, paddle::lite::operators::ElementwiseOp);
REGISTER_LITE_OP(elementwise_add, paddle::lite::operators::ElementwiseOp);

REGISTER_LITE_OP(elementwise_mul, paddle::lite::operators::ElementwiseOp);
REGISTER_LITE_OP(elementwise_max, paddle::lite::operators::ElementwiseOp);
143
REGISTER_LITE_OP(elementwise_div, paddle::lite::operators::ElementwiseOp);
Y
Yan Chunwei 已提交
144

M
mapingshuo 已提交
145 146 147 148 149 150
// #ifdef LITE_WITH_TRAIN
// REGISTER_LITE_OP(elementwise_sub_grad,
//                  paddle::lite::operators::ElementwiseGradExplicitOp);
// REGISTER_LITE_OP(elementwise_add_grad,
//                  paddle::lite::operators::ElementwiseGradExplicitOp);
// #endif