optimizer.h 6.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#include <map>
Y
Yan Chunwei 已提交
17
#include <memory>
18
#include <set>
Y
Yan Chunwei 已提交
19 20 21 22
#include <string>
#include <vector>
#include "lite/core/mir/generate_program_pass.h"
#include "lite/core/mir/pass_manager.h"
23
#include "lite/core/mir/pass_utils.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32
#include "lite/core/mir/ssa_graph.h"
#include "lite/core/mir/static_kernel_pick_pass.h"
#include "lite/core/mir/type_target_cast_pass.h"
#include "lite/core/program.h"
#include "lite/core/types.h"
#include "lite/model_parser/model_parser.h"
#ifdef LITE_WITH_NPU
#include "lite/core/mir/subgraph/generate_npu_program_pass.h"
#endif
33 34 35
#ifdef LITE_WITH_XPU
#include "lite/core/mir/subgraph/generate_xpu_program_pass.h"
#endif
Y
Yan Chunwei 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

namespace paddle {
namespace lite {

/*
 * lite::Optimizer optimize a program. It utilize the mir passes to analysis the
 * program and export an optimized program.
 */
class Optimizer {
 public:
  void Run(Program&& program,
           const std::vector<Place>& valid_places,
           core::KernelPickFactor kernel_pick_factor,
           const std::vector<std::string>& passes = {}) {
    program_ = &program;
    valid_places_ = valid_places;
    CHECK(!valid_places.empty()) << "At least one valid_place should be set";
    CHECK(!graph_) << "duplicate optimize found";
54

Y
Yan Chunwei 已提交
55 56 57 58 59 60 61 62
    graph_.reset(new mir::SSAGraph);
    graph_->Build(program, valid_places);
    graph_->SetValidPlaces(valid_places);

    SpecifyKernelPickTactic(kernel_pick_factor);
    InitTargetTypeTransformPass();

    if (passes.empty()) {
63
      std::vector<std::string> passes_local{
64 65 66 67
          {"lite_quant_dequant_fuse_pass",     //
           "lite_conv_elementwise_fuse_pass",  // conv-elemwise-bn
           "lite_conv_bn_fuse_pass",           //
           "lite_conv_elementwise_fuse_pass",  // conv-bn-elemwise
Y
Yan Chunwei 已提交
68 69
           // TODO(Superjomn) Refine the fusion related design to select fusion
           // kernels for devices automatically.
70 71 72 73
           "lite_conv_activation_fuse_pass",              //
           "lite_fc_fuse_pass",                           //
           "lite_shuffle_channel_fuse_pass",              //
           "lite_transpose_softmax_transpose_fuse_pass",  //
Z
zhupengyang 已提交
74
           "lite_interpolate_fuse_pass",                  //
75
           "identity_scale_eliminate_pass",               //
Y
Yan Chunwei 已提交
76 77 78
#ifdef LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
           "lite_elementwise_add_activation_fuse_pass",  //
#endif
79 80 81 82 83 84 85
           "static_kernel_pick_pass",        // pick original kernel from graph
           "variable_place_inference_pass",  // inference arg/var's
           // info(target/precision/layout/device)
           // using kernel info
           "argument_type_display_pass",  // debug pass: show arg-type-node's
                                          // info
                                          // (target/precision/layout/device)
Y
Yan Chunwei 已提交
86

87 88 89
           "type_target_cast_pass",  // add io_copy/io_copy_once if meet
                                     // different targets when last and next
                                     // node
Y
Yan Chunwei 已提交
90 91 92
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

93 94 95
           "io_copy_kernel_pick_pass",    //
           "argument_type_display_pass",  //

Y
Yan Chunwei 已提交
96 97 98 99 100 101 102
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

           "type_precision_cast_pass",       //
           "variable_place_inference_pass",  //
           "argument_type_display_pass",     //

103 104 105 106
           "type_layout_cast_pass",  // add layout/layout_once op if meet
                                     // different layout when last and next node
           "argument_type_display_pass",  //

Y
Yan Chunwei 已提交
107
           "variable_place_inference_pass",  //
108
           "argument_type_display_pass",
Y
Yan Chunwei 已提交
109 110

           "runtime_context_assign_pass",
111 112
           "argument_type_display_pass",
           "memory_optimize_pass"}};
113
      RunPasses(passes_local);
Y
Yan Chunwei 已提交
114 115 116 117 118 119 120 121 122 123
    } else {
      RunPasses(passes);
    }
    exec_scope_ = program.exec_scope();
  }

  const lite::Scope* exec_scope() const { return exec_scope_; }

  // Generate a new program based on the mir graph.
  std::unique_ptr<RuntimeProgram> GenRuntimeProgram() {
124 125 126 127 128 129
    // Extra passes are applied for NPU and XPU, they depends on the shapes
    // of input tensors. so GenRuntimeProgram() must be called after the shapes
    // of input tensors are determined.
    std::vector<std::string> subgraph_passes{"generate_npu_program_pass",
                                             "generate_xpu_program_pass"};
    RunPasses(subgraph_passes);
130

Y
Yan Chunwei 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    auto pass = mir::PassManager::Global().LookUp<mir::GenerateProgramPass>(
        "generate_program_pass");
    pass->Apply(graph_);
    auto program = pass->GenProgram();
    CHECK(exec_scope_);
    program->set_exec_scope(exec_scope_);
    return program;
  }

  void InitTargetTypeTransformPass() {
    auto* pass =
        mir::PassManager::Global().LookUp<mir::TypeTargetTransformPass>(
            "type_target_cast_pass");
    CHECK(pass);
    CHECK(!valid_places_.empty());
    pass->SetValidPlaces(valid_places_);
  }

  // Generate C++ code which combines the inference program, model and weights.
  void GenCode(const std::string& code_dir);

  const mir::SSAGraph& ssa_graph() const {
    CHECK(graph_);
    return *graph_;
  }

  mir::SSAGraph* mutable_ssa_graph() {
    CHECK(graph_);
    return graph_.get();
  }

  lite::Scope* exec_scope() { return exec_scope_; }

 protected:
  void SpecifyKernelPickTactic(core::KernelPickFactor factor);

  // Specify the passes and run them.
  void RunPasses(const std::vector<std::string>& passes) {
    for (auto& x : passes) {
170 171
      LOG(INFO) << "== Running pass: " << x;
      mir::Pass* pass = mir::PassManager::Global().LookUp(x);
172 173 174 175 176
      if (!pass) {
        LOG(INFO) << "   - Skip " << x << " because the pass isn't found.";
        continue;
      }
      std::set<TargetType> targets;
177
      for (const auto& place : valid_places_) {
178
        targets.insert(place.target);
179
      }
180 181
      bool matched =
          PassMatchesTarget(*pass, targets) && PassMatchesKernels(*pass);
182
      if (!matched) {
183 184
        LOG(INFO) << "   - Skip " << x
                  << " because the target or kernel does not match.";
185 186 187 188
      } else {
        pass->Apply(graph_);
        LOG(INFO) << "== Finished running: " << x;
      }
Y
Yan Chunwei 已提交
189 190 191 192 193 194 195 196 197 198 199 200
    }
  }

 private:
  std::unique_ptr<mir::SSAGraph> graph_;
  std::vector<Place> valid_places_;
  lite::Scope* exec_scope_{};
  Program* program_{};
};

}  // namespace lite
}  // namespace paddle