test_multiclass_nms_op.cpp 5.8 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "../test_include.h"
#include "operators/multiclass_nms_op.h"

namespace paddle_mobile {
namespace framework {

template <typename Dtype>
class TestMultiClassNMSOp {
 public:
  explicit TestMultiClassNMSOp(const Program<Dtype> p) : program_(p) {
    if (use_optimize_) {
      to_predict_program_ = program_.optimizeProgram;
    } else {
      to_predict_program_ = program_.originProgram;
    }

    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        to_predict_program_->Blocks();
    for (auto block_desc : blocks) {
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      for (auto op : ops) {
        if (op->Type() == "multiclass_nms" &&
            op->Input("BBoxes")[0] == "box_coder_0.tmp_0") {
L
lijiancheng0614 已提交
38
          DLOG << " attr size: " << op->GetAttrMap().size();
E
eclipsess 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
          DLOG << " inputs size: " << op->GetInputs().size();
          DLOG << " outputs size: " << op->GetOutputs().size();
          DLOG << " BBoxes is : " << op->Input("BBoxes")[0];
          DLOG << " Scores is : " << op->Input("Scores")[0];
          DLOG << " Out is : " << op->Output("Out")[0];
          DLOG << " keep_top_k : "
               << op->GetAttrMap().at("keep_top_k").Get<int>();
          DLOG << " background_label : "
               << op->GetAttrMap().at("background_label").Get<int>();
          DLOG << " nms_eta : " << op->GetAttrMap().at("nms_eta").Get<float>();
          DLOG << " nms_threshold : "
               << op->GetAttrMap().at("nms_threshold").Get<float>();
          DLOG << " nms_top_k : "
               << op->GetAttrMap().at("nms_top_k").Get<int>();
          DLOG << " score_threshold : "
               << op->GetAttrMap().at("score_threshold").Get<float>();
          std::shared_ptr<operators::MultiClassNMSOp<Dtype, float>> priorbox =
              std::make_shared<operators::MultiClassNMSOp<Dtype, float>>(
                  op->Type(), op->GetInputs(), op->GetOutputs(),
                  op->GetAttrMap(), program_.scope);
          ops_of_block_[*block_desc.get()].push_back(priorbox);
        }
      }
    }
  }

  std::shared_ptr<Tensor> predict(const Tensor &t1, const Tensor &t2) {
    // feed
    auto scope = program_.scope;
    Variable *x1_feed_value = scope->Var("box_coder_0.tmp_0");
E
eclipsess 已提交
69
    auto tensor_x1 = x1_feed_value->GetMutable<LoDTensor>();
E
eclipsess 已提交
70 71 72
    tensor_x1->ShareDataWith(t1);

    Variable *x2_feed_value = scope->Var("transpose_12.tmp_0");
E
eclipsess 已提交
73
    auto tensor_x2 = x2_feed_value->GetMutable<LoDTensor>();
E
eclipsess 已提交
74 75 76
    tensor_x2->ShareDataWith(t2);

    Variable *output = scope->Var("detection_output_0.tmp_0");
E
eclipsess 已提交
77
    auto *output_tensor = output->GetMutable<LoDTensor>();
E
eclipsess 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    output_tensor->mutable_data<float>({1917, 6});

    std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
    out_tensor.reset(output_tensor);

    predict(t1, t2, 0);

    return out_tensor;
  }

 private:
  const framework::Program<Dtype> program_;
  std::shared_ptr<ProgramDesc> to_predict_program_;
  std::map<framework::BlockDesc,
           std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
      ops_of_block_;
  bool use_optimize_ = false;

  void predict(const Tensor &t1, const Tensor &t2, int block_id) {
    std::shared_ptr<BlockDesc> to_predict_block =
        to_predict_program_->Block(block_id);
    for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
      auto op = ops_of_block_[*to_predict_block.get()][j];
      DLOG << "op -> run()";
      op->Run();
    }
  }
};

template class TestMultiClassNMSOp<CPU>;
}  // namespace framework
}  // namespace paddle_mobile

int main() {
  DLOG << "----------**********----------";
  DLOG << "begin to run MulticlassNMS Test";
  paddle_mobile::Loader<paddle_mobile::CPU> loader;
L
lijiancheng0614 已提交
115
  auto program = loader.Load(std::string(g_mobilenet_ssd));
E
eclipsess 已提交
116 117

  paddle_mobile::framework::Tensor inputx1;
L
lijiancheng0614 已提交
118
  SetupTensor<float>(&inputx1, {1, 2, 4}, static_cast<float>(0),
E
eclipsess 已提交
119 120
                     static_cast<float>(1));
  auto *inputx1_ptr = inputx1.data<float>();
L
lijiancheng0614 已提交
121 122 123 124
  const float x1[] = {0, 0, 100, 100, 50, 50, 150, 150};
  for (int i = 0; i < 8; ++i) {
    *(inputx1_ptr + i) = x1[i];
  }
E
eclipsess 已提交
125 126

  paddle_mobile::framework::Tensor inputx2;
L
lijiancheng0614 已提交
127
  SetupTensor<float>(&inputx2, {1, 2, 2}, static_cast<float>(0),
E
eclipsess 已提交
128 129
                     static_cast<float>(1));
  auto *inputx2_ptr = inputx2.data<float>();
L
lijiancheng0614 已提交
130 131 132 133
  const float x2[] = {0.4, 0.3, 0.6, 0.7};
  for (int i = 0; i < 4; ++i) {
    *(inputx2_ptr + i) = x2[i];
  }
E
eclipsess 已提交
134 135 136 137 138 139 140

  paddle_mobile::framework::TestMultiClassNMSOp<paddle_mobile::CPU>
      testMultiClassNMSOp(program);

  auto output = testMultiClassNMSOp.predict(inputx1, inputx2);
  auto *output_ptr = output->data<float>();

L
lijiancheng0614 已提交
141
  for (int i = 0; i < output->numel(); ++i) {
E
eclipsess 已提交
142 143
    DLOG << output_ptr[i];
  }
L
lijiancheng0614 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

  // test multi point
  paddle_mobile::framework::Tensor inputx3;
  SetupTensor<float>(&inputx3, {1, 2, 8}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputx3_ptr = inputx3.data<float>();
  const float x3[] = {0,  0,  100, 0,  100, 100, 0,  100,
                      50, 50, 150, 50, 150, 150, 50, 150};
  for (int i = 0; i < 16; ++i) {
    *(inputx3_ptr + i) = x3[i];
  }

  auto output2 = testMultiClassNMSOp.predict(inputx3, inputx2);
  auto *output_ptr2 = output2->data<float>();

  for (int i = 0; i < output2->numel(); ++i) {
    DLOG << output_ptr2[i];
  }
E
eclipsess 已提交
162 163
  return 0;
}