api.cpp 15.1 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "api.h"
H
hanbuhe 已提交
16 17
#include <fcntl.h>
#include <sys/ioctl.h>
Z
zhangyang 已提交
18
#include <sys/mman.h>
H
hanbuhe 已提交
19
#include <algorithm>
20
#include <map>
Z
zhangyang 已提交
21 22 23
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
Z
zhangyang 已提交
24
#define FPGA_TEST_MODE
25
#define PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
26

Z
zhangyang 已提交
27
namespace paddle_mobile {
H
hanbuhe 已提交
28 29 30 31
namespace fpga {

static int fd = -1;
static const char *device_path = "/dev/fpgadrv0";
32
static std::map<void *, size_t> memory_map;
H
hanbuhe 已提交
33

H
hanbuhe 已提交
34
static inline int do_ioctl(int req, const void *arg) {
H
hanbuhe 已提交
35
#ifdef PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
36 37 38
  int result = ioctl(fd, req, (uint64_t)arg);
  PADDLE_MOBILE_ENFORCE(result == 0, "ioctl didn't return correctly");
  return result;
H
hanbuhe 已提交
39 40 41
#else
  return -1;
#endif
Z
zhangyang 已提交
42
}
H
hanbuhe 已提交
43 44 45 46 47 48 49 50 51 52

int open_device() {
  if (fd == -1) {
    fd = open(device_path, O_RDWR);
  }
  return fd;
}

// memory management;
void *fpga_malloc(size_t size) {
53
  static uint64_t counter = 0;
Z
zhangyang 已提交
54

H
hanbuhe 已提交
55
#ifdef PADDLE_MOBILE_OS_LINUX
56
  auto ptr = mmap64(nullptr, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
H
hanbuhe 已提交
57
#else
Z
zhangyang 已提交
58
  auto ptr = malloc(size);
H
hanbuhe 已提交
59
#endif
Z
zhangyang 已提交
60 61 62 63 64
  counter += size;
  memory_map.insert(std::make_pair(ptr, size));
  DLOG << "Address: " << ptr << ", " << size << " bytes allocated. Total "
       << counter << " bytes";
  return ptr;
H
hanbuhe 已提交
65 66
}

67
void fpga_free(void *ptr) {
68 69
  static uint64_t counter = 0;
  size_t size = 0;
Z
zhangyang 已提交
70

71 72 73 74
  auto iter = memory_map.find(ptr);  // std::map<void *, size_t>::iterator
  if (iter != memory_map.end()) {
    size = iter->second;
    memory_map.erase(iter);
Z
zhangyang 已提交
75 76
#ifdef PADDLE_MOBILE_OS_LINUX
    munmap(ptr, size);
77
#else
Z
zhangyang 已提交
78
    free(ptr);
79
#endif
Z
zhangyang 已提交
80 81 82 83 84 85
    counter += size;
    DLOG << "Address: " << ptr << ", " << size << " bytes freed. Total "
         << counter << " bytes";
  } else {
    DLOG << "Invalid pointer";
  }
86
}
H
hanbuhe 已提交
87 88 89 90 91

void fpga_copy(void *dest, const void *src, size_t num) {
  memcpy(dest, src, num);
}

92
int fpga_flush(void *address, size_t size) {
Z
zhangyang 已提交
93
  struct MemoryCacheArgs args = {nullptr};
94 95 96 97 98 99
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_FLUSH, &args);
}

int fpga_invalidate(void *address, size_t size) {
Z
zhangyang 已提交
100
  struct MemoryCacheArgs args = {nullptr};
101 102 103 104 105
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_INVAL, &args);
}

Z
zhangyang 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
int ComputeBasicConv(const struct ConvArgs &args) {
  DLOG << "======Compute Basic Conv======";
  DLOG << "   relu_enabled:" << args.relu_enabled
       << "   sb_address:" << args.sb_address
       << "   filter_address:" << args.filter_address
       << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num;
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;

  return do_ioctl(IOCTL_CONFIG_CONV, &args);
}

Z
zhangyang 已提交
130
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
Z
zhangyang 已提交
131
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
132 133 134 135
  DLOG << "=============ComputeFPGAConv===========";
  DLOG << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num
       << "   split_num:" << args.split_num;
Z
zhangyang 已提交
136
#endif
Z
zhangyang 已提交
137

Z
zhangyang 已提交
138 139
  int split_num = args.split_num;
  for (int i = 0; i < split_num; i++) {
Z
zhangyang 已提交
140
    ComputeBasicConv(args.conv_args[i]);
Z
zhangyang 已提交
141
  }
Z
zhangyang 已提交
142

Z
zhangyang 已提交
143 144 145
  if (split_num > 1) {
    ComputeFPGAConcat(args.concat_arg);
  }
H
hanbuhe 已提交
146
}
Z
zhangyang 已提交
147

H
hanbuhe 已提交
148
int ComputeFpgaPool(const struct PoolingArgs &args) {
Z
zhangyang 已提交
149
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
150
  DLOG << "=============ComputeFpgaPool===========";
Z
zhangyang 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
166
  return do_ioctl(IOCTL_CONFIG_POOLING, &args);
H
hanbuhe 已提交
167
}
Z
zhangyang 已提交
168

H
hanbuhe 已提交
169
int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
Z
zhangyang 已提交
170
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
171
  DLOG << "=============ComputeFpgaEWAdd===========";
Z
zhangyang 已提交
172 173 174 175 176 177 178 179 180 181
  DLOG << "   relu_enabled:" << args.relu_enabled << "   const0:" << args.const0
       << "   const1:" << args.const1;
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
Z
zhangyang 已提交
182
       << "   image1_scale_address:" << args.image1.scale_address
Z
zhangyang 已提交
183 184 185 186 187 188 189 190 191
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
192 193 194
  return do_ioctl(IOCTL_CONFIG_EW, &args);
}
int PerformBypass(const struct BypassArgs &args) {
Z
zhangyang 已提交
195
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
196
  DLOG << "=============ComputeFpgaBypass===========";
H
hanbuhe 已提交
197
  DLOG << "   input_type:" << args.input_data_type
Z
zhangyang 已提交
198 199 200
       << "   output_type:" << args.output_data_type
       << "   input_layout_type:" << args.input_layout_type
       << "   output_layout_type:" << args.output_layout_type;
Z
zhangyang 已提交
201 202 203 204 205 206 207 208 209 210 211
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
212
  return do_ioctl(IOCTL_CONFIG_BYPASS, &args);
H
hanbuhe 已提交
213
}
Z
zhangyang 已提交
214

Z
zhangyang 已提交
215
int ComputeFPGAConcat(const struct ConcatArgs &args) {
Z
zhangyang 已提交
216 217
#ifdef FPGA_TEST_MODE
  DLOG << "=============ComputeFpgaConcat===========";
Z
zhangyang 已提交
218 219
  DLOG << "   Image_num: " << args.image_num
       << "   out_address:" << args.image_out
Z
zhangyang 已提交
220 221 222 223 224 225 226 227 228 229
       << "   out_scale_address:" << args.scale_out;
  DLOG << "   image_height:" << args.height << "   image_width:" << args.width;
  for (int i = 0; i < args.image_num; i++) {
    DLOG << "   " << i << "th:        ";
    DLOG << "   channel_num:" << args.channel_num[i]
         << "   image_address:" << args.images_in[i]
         << "   image_scale_address:" << args.scales_in[i];
  }
#endif

Z
zhangyang 已提交
230 231 232 233 234 235
  image::concat_images(args.images_in, args.scales_in, args.image_out,
                       args.scale_out, args.image_num, args.channel_num,
                       args.height, args.width);
  return 0;
}

Z
zhangyang 已提交
236 237
int get_align_image_cw(int cw) { return align_to_x(cw, IMAGE_ALIGNMENT); }

Z
zhangyang 已提交
238 239
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
240
  auto channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
241
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
242
  size_t memory_size = channel * height * width * sizeof(float);
Z
zhangyang 已提交
243
  auto new_data = (float *)fpga_malloc(memory_size);
Z
zhangyang 已提交
244 245 246 247 248
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

Z
zhangyang 已提交
249
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
250
  auto dims = ofm_tensor->dims();
251 252 253 254 255 256 257 258 259 260 261 262 263
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
264 265
}

Z
zhangyang 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

Z
zhangyang 已提交
283 284 285 286
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
287 288 289

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
290 291
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
292 293 294 295
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

296
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
297
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
298 299
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
300 301 302 303
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
304 305 306 307 308 309 310 311
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

int get_aligned_filter_num(int num) {
  return align_to_x(num, FILTER_NUM_ALIGNMENT);
}

Z
zhangyang 已提交
312 313
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
Z
zhangyang 已提交
314
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
315
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
316
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
317
  size_t memory_size = num * channel * height * width * sizeof(float);
Z
zhangyang 已提交
318
  auto new_data = (float *)fpga_malloc(memory_size);
Z
zhangyang 已提交
319 320 321 322 323 324 325 326 327 328 329 330
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
331 332 333 334 335 336 337 338 339
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
Z
zhangyang 已提交
340
  auto ddim = framework::make_ddim({1, sum_channel, height, width});
Z
zhangyang 已提交
341 342 343 344
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

345 346 347 348 349 350
void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
                   framework::Tensor *out, framework::Tensor *filter,
                   bool relu_enabled, int group_num, int stride_h, int stride_w,
                   int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
351
  auto out_ptr = out->data<float>();
352 353

  arg->group_num = (uint32_t)group_num;
Z
zhangyang 已提交
354 355
  // Either group_num or split_num = 1;
  arg->split_num = group_num == 1 ? (uint32_t)get_plit_num(filter) : 1;
356 357 358
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
Z
zhangyang 已提交
359
  arg->conv_args = (ConvArgs *)fpga_malloc(arg->split_num * sizeof(ConvArgs));
360 361 362 363 364 365 366 367

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)filter->dims()[2];
  arg->concat_arg.width = (uint32_t)filter->dims()[3];

  int n = arg->split_num;
Z
zhangyang 已提交
368 369 370
  arg->concat_arg.images_in = (half **)fpga_malloc(n * sizeof(int *));
  arg->concat_arg.scales_in = (float **)fpga_malloc(n * sizeof(float *));
  arg->concat_arg.channel_num = (uint32_t *)fpga_malloc(n * sizeof(uint32_t));
371 372
  arg->concat_arg.image_out = out_ptr;

Z
zhangyang 已提交
373
  auto channel = (int)out->dims()[1];
Z
zhangyang 已提交
374 375
  int filter_num_per_div = get_filter_num_per_div(filter, group_num);
  int element_num = get_aligned_filter_element_num(
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  for (int i = 0; i < n; i++) {
    arg->conv_args[i].relu_enabled = relu_enabled;
    arg->conv_args[i].group_num = (uint32_t)group_num;
    arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_args[i].image.address = input_ptr;
    arg->conv_args[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.scale_address = input->scale;
    arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_args[i].image.pad_width = (uint32_t)padding_w;
392 393 394 395
    arg->conv_args[i].filter_scale_address = filter->scale;
    arg->conv_args[i].filter_address =
        &((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
    arg->conv_args[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
396
    arg->conv_args[i].filter_num =
Z
zhangyang 已提交
397
        (uint32_t)(i == n - 1 ? channel - (n - 1) * filter_num_per_div
398
                              : filter_num_per_div);
399 400 401

    if (n > 1) {
      arg->conv_args[i].output.scale_address =
Z
zhangyang 已提交
402 403 404 405 406 407
          (float *)fpga_malloc(2 * sizeof(float));
      arg->conv_args[i].output.address = fpga_malloc(
          input->dims()[2] *
          align_to_x(input->dims()[3] * arg->conv_args[i].filter_num,
                     IMAGE_ALIGNMENT) *
          sizeof(half));
408 409 410 411 412 413 414 415
    }

    else {
      arg->conv_args[i].output.scale_address = out->scale;
      arg->conv_args[i].output.address = out_ptr;
    }

    arg->concat_arg.images_in[i] = (half *)arg->conv_args[i].output.address;
Z
zhangyang 已提交
416
    arg->concat_arg.scales_in[i] = arg->conv_args[i].output.scale_address;
417 418 419 420
    arg->concat_arg.channel_num[i] = arg->conv_args[i].filter_num;
  }
}

H
hanbuhe 已提交
421
}  // namespace fpga
Z
zhangyang 已提交
422
}  // namespace paddle_mobile