api.cpp 14.5 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Z
zhangyang 已提交
15
#include "api.h"
H
hanbuhe 已提交
16 17
#include <fcntl.h>
#include <sys/ioctl.h>
Z
zhangyang 已提交
18
#include <sys/mman.h>
H
hanbuhe 已提交
19
#include <algorithm>
Z
zhangyang 已提交
20 21 22
#include "bias_scale.h"
#include "filter.h"
#include "image.h"
Z
zhangyang 已提交
23
#define FPGA_TEST_MODE
Z
zhangyang 已提交
24
//#define PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
25

Z
zhangyang 已提交
26
namespace paddle_mobile {
H
hanbuhe 已提交
27 28 29 30 31
namespace fpga {

static int fd = -1;
static const char *device_path = "/dev/fpgadrv0";

H
hanbuhe 已提交
32
static inline int do_ioctl(int req, const void *arg) {
H
hanbuhe 已提交
33
#ifdef PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
34 35 36
  int result = ioctl(fd, req, (uint64_t)arg);
  PADDLE_MOBILE_ENFORCE(result == 0, "ioctl didn't return correctly");
  return result;
H
hanbuhe 已提交
37 38 39
#else
  return -1;
#endif
Z
zhangyang 已提交
40
}
H
hanbuhe 已提交
41 42 43 44 45 46 47 48 49 50

int open_device() {
  if (fd == -1) {
    fd = open(device_path, O_RDWR);
  }
  return fd;
}

// memory management;
void *fpga_malloc(size_t size) {
51
  DLOG << size << " bytes allocated";
H
hanbuhe 已提交
52
#ifdef PADDLE_MOBILE_OS_LINUX
Z
zhangyang 已提交
53 54
  return reinterpret_cast<void *>(
      mmap64(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0));
H
hanbuhe 已提交
55
#else
56
  return malloc(size);
H
hanbuhe 已提交
57
#endif
H
hanbuhe 已提交
58 59
}

60 61 62 63 64 65 66
void fpga_free(void *ptr) {
#ifdef PADDLE_MOBILE_OS_LINUX
  munmap(ptr, 0);
#else
  free(ptr);
#endif
}
H
hanbuhe 已提交
67 68 69 70 71

void fpga_copy(void *dest, const void *src, size_t num) {
  memcpy(dest, src, num);
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85
int fpga_flush(void *address, size_t size) {
  struct MemoryCacheArgs args;
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_FLUSH, &args);
}

int fpga_invalidate(void *address, size_t size) {
  struct MemoryCacheArgs args;
  args.address = address;
  args.size = size;
  return do_ioctl(IOCTL_MEMCACHE_INVAL, &args);
}

Z
zhangyang 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
int ComputeBasicConv(const struct ConvArgs &args) {
  DLOG << "======Compute Basic Conv======";
  DLOG << "   relu_enabled:" << args.relu_enabled
       << "   sb_address:" << args.sb_address
       << "   filter_address:" << args.filter_address
       << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num;
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;

  return do_ioctl(IOCTL_CONFIG_CONV, &args);
}

Z
zhangyang 已提交
110
int ComputeFpgaConv(const struct WrapperConvArgs &args) {
Z
zhangyang 已提交
111
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
112 113 114 115
  DLOG << "=============ComputeFPGAConv===========";
  DLOG << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num
       << "   split_num:" << args.split_num;
Z
zhangyang 已提交
116
#endif
Z
zhangyang 已提交
117

Z
zhangyang 已提交
118 119
  int split_num = args.split_num;
  for (int i = 0; i < split_num; i++) {
Z
zhangyang 已提交
120
    ComputeBasicConv(args.conv_args[i]);
Z
zhangyang 已提交
121
  }
Z
zhangyang 已提交
122

Z
zhangyang 已提交
123 124 125
  if (split_num > 1) {
    ComputeFPGAConcat(args.concat_arg);
  }
H
hanbuhe 已提交
126
}
Z
zhangyang 已提交
127

H
hanbuhe 已提交
128
int ComputeFpgaPool(const struct PoolingArgs &args) {
Z
zhangyang 已提交
129
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
130
  DLOG << "=============ComputeFpgaPool===========";
Z
zhangyang 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
146
  return do_ioctl(IOCTL_CONFIG_POOLING, &args);
H
hanbuhe 已提交
147
}
Z
zhangyang 已提交
148

H
hanbuhe 已提交
149
int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
Z
zhangyang 已提交
150
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
151
  DLOG << "=============ComputeFpgaEWAdd===========";
Z
zhangyang 已提交
152 153 154 155 156 157 158 159 160 161
  DLOG << "   relu_enabled:" << args.relu_enabled << "   const0:" << args.const0
       << "   const1:" << args.const1;
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
Z
zhangyang 已提交
162
       << "   image1_scale_address:" << args.image1.scale_address
Z
zhangyang 已提交
163 164 165 166 167 168 169 170 171
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
172 173 174
  return do_ioctl(IOCTL_CONFIG_EW, &args);
}
int PerformBypass(const struct BypassArgs &args) {
Z
zhangyang 已提交
175
#ifdef FPGA_TEST_MODE
Z
zhangyang 已提交
176
  DLOG << "=============ComputeFpgaBypass===========";
H
hanbuhe 已提交
177
  DLOG << "   input_type:" << args.input_data_type
Z
zhangyang 已提交
178 179 180
       << "   output_type:" << args.output_data_type
       << "   input_layout_type:" << args.input_layout_type
       << "   output_layout_type:" << args.output_layout_type;
Z
zhangyang 已提交
181 182 183 184 185 186 187 188 189 190 191
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

H
hanbuhe 已提交
192
  return do_ioctl(IOCTL_CONFIG_BYPASS, &args);
H
hanbuhe 已提交
193
}
Z
zhangyang 已提交
194

Z
zhangyang 已提交
195
int ComputeFPGAConcat(const struct ConcatArgs &args) {
Z
zhangyang 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208
#ifdef FPGA_TEST_MODE
  DLOG << "=============ComputeFpgaConcat===========";
  DLOG << "   out_address:" << args.image_out
       << "   out_scale_address:" << args.scale_out;
  DLOG << "   image_height:" << args.height << "   image_width:" << args.width;
  for (int i = 0; i < args.image_num; i++) {
    DLOG << "   " << i << "th:        ";
    DLOG << "   channel_num:" << args.channel_num[i]
         << "   image_address:" << args.images_in[i]
         << "   image_scale_address:" << args.scales_in[i];
  }
#endif

Z
zhangyang 已提交
209 210 211 212 213 214
  image::concat_images(args.images_in, args.scales_in, args.image_out,
                       args.scale_out, args.image_num, args.channel_num,
                       args.height, args.width);
  return 0;
}

Z
zhangyang 已提交
215 216
int get_align_image_cw(int cw) { return align_to_x(cw, IMAGE_ALIGNMENT); }

Z
zhangyang 已提交
217 218
void format_image(framework::Tensor *image_tensor) {
  auto dims = image_tensor->dims();
Z
zhangyang 已提交
219
  auto channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
220
  auto data_ptr = image_tensor->data<float>();
Z
zhangyang 已提交
221 222 223 224 225 226 227
  size_t memory_size = channel * height * width * sizeof(float);
  float *new_data = (float *)fpga_malloc(memory_size);
  fpga_copy(new_data, data_ptr, memory_size);
  image::format_image(&new_data, channel, height, width);
  image_tensor->reset_data_ptr(new_data);
}

Z
zhangyang 已提交
228
void format_fp16_ofm(framework::Tensor *ofm_tensor) {
Z
zhangyang 已提交
229
  auto dims = ofm_tensor->dims();
230 231 232 233 234 235 236 237 238 239 240 241 242
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(half);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(half);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
Z
zhangyang 已提交
243 244
}

Z
zhangyang 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
void format_fp32_ofm(framework::Tensor *ofm_tensor) {
  auto dims = ofm_tensor->dims();
  size_t memory_size = 0;
  if (dims.size() == 4) {
    auto channel = dims[1], height = dims[2], width = dims[3];
    memory_size =
        height * align_to_x(channel * width, IMAGE_ALIGNMENT) * sizeof(float);
  } else if (dims.size() == 2) {
    memory_size = align_to_x(dims[1], IMAGE_ALIGNMENT) * sizeof(float);
  } else {
    DLOG << "Wrong ofm dimension";
  }
  auto p = fpga_malloc(memory_size);
  memset(p, 0, memory_size);
  ofm_tensor->reset_data_ptr(p);
}

Z
zhangyang 已提交
262 263 264 265
float filter_find_max(framework::Tensor *filter_tensor) {
  auto filter_ptr = filter_tensor->data<float>();
  return filter::find_max(filter_ptr, filter_tensor->numel());
}
Z
zhangyang 已提交
266 267 268

int get_plit_num(framework::Tensor *filter_tensor) {
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
269 270
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
271 272 273 274
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_split_num(num, div_capacity);
}

275
int get_filter_num_per_div(framework::Tensor *filter_tensor, int group_num) {
Z
zhangyang 已提交
276
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
277 278
  auto chw = dims[1] * dims[2] * dims[3];
  auto num = dims[0];
Z
zhangyang 已提交
279 280 281 282
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

Z
zhangyang 已提交
283 284 285 286 287 288 289 290
int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

int get_aligned_filter_num(int num) {
  return align_to_x(num, FILTER_NUM_ALIGNMENT);
}

Z
zhangyang 已提交
291 292
void format_filter(framework::Tensor *filter_tensor, float max_value,
                   int group_num) {
Z
zhangyang 已提交
293
  auto dims = filter_tensor->dims();
Z
zhangyang 已提交
294
  auto num = dims[0], channel = dims[1], height = dims[2], width = dims[3];
Z
zhangyang 已提交
295
  auto data_ptr = filter_tensor->data<float>();
Z
zhangyang 已提交
296
  size_t memory_size = num * channel * height * width * sizeof(float);
Z
zhangyang 已提交
297
  auto new_data = (float *)fpga_malloc(memory_size);
Z
zhangyang 已提交
298 299 300 301 302 303 304 305 306 307 308 309
  fpga_copy(new_data, data_ptr, memory_size);
  filter::format_filter(&new_data, num, channel, height, width, group_num,
                        max_value);
  filter_tensor->reset_data_ptr(new_data);
}

void format_bias_scale_array(float **bias_scale_array,
                             int element_num_per_division, int num) {
  bias_scale::format_bias_scale_array(bias_scale_array,
                                      element_num_per_division, num);
}

Z
zhangyang 已提交
310 311 312 313 314 315 316 317 318 319 320 321 322 323
void format_concat_output(framework::Tensor *out, int height, int width,
                          int image_num, uint32_t *channel_num) {
  int sum_channel = 0, sum_cw = 0;
  for (int i = 0; i < image_num; i++) {
    sum_channel += channel_num[i];
  }

  sum_cw = align_to_x(width * sum_channel, IMAGE_ALIGNMENT);
  auto data_ptr = fpga_malloc(height * sum_cw * sizeof(half));
  auto ddim = framework::make_ddim({-1, sum_channel, height, width});
  out->Resize(ddim);
  out->reset_data_ptr(data_ptr);
}

324 325 326 327 328 329
void fill_conv_arg(struct WrapperConvArgs *arg, framework::Tensor *input,
                   framework::Tensor *out, framework::Tensor *filter,
                   bool relu_enabled, int group_num, int stride_h, int stride_w,
                   int padding_h, int padding_w, float *bs_ptr) {
  auto input_ptr = input->data<float>();
  auto filter_ptr = filter->data<float>();
Z
zhangyang 已提交
330
  auto out_ptr = out->data<float>();
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

  arg->group_num = (uint32_t)group_num;
  arg->split_num = (uint32_t)fpga::get_plit_num(filter);
  arg->filter_num = (uint32_t)filter->dims()[0];
  arg->output.address = out_ptr;
  arg->output.scale_address = out->scale;
  arg->conv_args = (fpga::ConvArgs *)fpga::fpga_malloc(arg->split_num *
                                                       sizeof(fpga::ConvArgs));

  arg->concat_arg.image_num = arg->split_num;
  arg->concat_arg.image_out = out_ptr;
  arg->concat_arg.scale_out = out->scale;
  arg->concat_arg.height = (uint32_t)filter->dims()[2];
  arg->concat_arg.width = (uint32_t)filter->dims()[3];

  int n = arg->split_num;
  arg->concat_arg.images_in = (half **)fpga::fpga_malloc(n * sizeof(int *));
  arg->concat_arg.scales_in = (float **)fpga::fpga_malloc(n * sizeof(float *));
  arg->concat_arg.channel_num =
      (uint32_t *)fpga::fpga_malloc(n * sizeof(uint32_t));
  arg->concat_arg.image_out = out_ptr;

Z
zhangyang 已提交
353
  auto channel = (int)out->dims()[1];
354
  int filter_num_per_div = fpga::get_filter_num_per_div(filter, group_num);
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
  int element_num = fpga::get_aligned_filter_element_num(
      filter->dims()[1] * filter->dims()[2] * filter->dims()[3]);

  for (int i = 0; i < n; i++) {
    arg->conv_args[i].relu_enabled = relu_enabled;
    arg->conv_args[i].group_num = (uint32_t)group_num;
    arg->conv_args[i].kernel.stride_h = (uint32_t)stride_h;
    arg->conv_args[i].kernel.stride_w = (uint32_t)stride_w;
    arg->conv_args[i].kernel.height = (uint32_t)filter->dims()[2];
    arg->conv_args[i].kernel.width = (uint32_t)filter->dims()[3];
    arg->conv_args[i].image.address = input_ptr;
    arg->conv_args[i].image.channels = (uint32_t)input->dims()[1];
    arg->conv_args[i].image.height = (uint32_t)input->dims()[2];
    arg->conv_args[i].image.width = (uint32_t)input->dims()[3];
    arg->conv_args[i].image.scale_address = input->scale;
    arg->conv_args[i].image.pad_height = (uint32_t)padding_h;
    arg->conv_args[i].image.pad_width = (uint32_t)padding_w;
372 373 374 375
    arg->conv_args[i].filter_scale_address = filter->scale;
    arg->conv_args[i].filter_address =
        &((int8_t *)filter_ptr)[i * element_num * filter_num_per_div];
    arg->conv_args[i].sb_address = &bs_ptr[i * filter_num_per_div * 2];
376 377
    arg->conv_args[i].filter_num =
        (uint32_t)(i == n - 1 ? fpga::get_aligned_filter_num(
378 379
                                    channel - (n - 1) * filter_num_per_div)
                              : filter_num_per_div);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

    if (n > 1) {
      arg->conv_args[i].output.scale_address =
          (float *)fpga::fpga_malloc(2 * sizeof(float));
      arg->conv_args[i].output.address =
          fpga::fpga_malloc(input->dims()[2] * input->dims()[3] *
                            arg->conv_args[i].filter_num * sizeof(half));
    }

    else {
      arg->conv_args[i].output.scale_address = out->scale;
      arg->conv_args[i].output.address = out_ptr;
    }

    arg->concat_arg.images_in[i] = (half *)arg->conv_args[i].output.address;
    arg->concat_arg.scales_in[i] = (float *)arg->conv_args[i].sb_address;
    arg->concat_arg.channel_num[i] = arg->conv_args[i].filter_num;
  }
}

H
hanbuhe 已提交
400
}  // namespace fpga
Z
zhangyang 已提交
401
}  // namespace paddle_mobile