prior_box_op.cc 12.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {

typedef struct __tag_st_priorbox_param {
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances;
  float step_w;
  float step_h;
  float offset;
  int32_t img_w;
  int32_t img_h;
  int32_t prior_num;
  bool min_max_aspect_ratios_order;
  bool clip;
  bool flip;
} st_priorbox_param;

inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
                               std::vector<float>* output_aspect_ratior) {
  constexpr float epsilon = 1e-6;
  output_aspect_ratior->clear();
  output_aspect_ratior->push_back(1.0f);
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
    for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
      if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
      output_aspect_ratior->push_back(ar);
      if (flip) {
        output_aspect_ratior->push_back(1.0f / ar);
      }
    }
  }
}

float* compute_priorbox_kernel(OpLite* op, st_priorbox_param* param) {
  auto op_info = op->op_info();
  auto scope = op->scope();
  // inputs
  auto in_var_name = op_info->Input("Input").front();
  auto in = scope->FindVar(in_var_name)->GetMutable<lite::Tensor>();
  auto in_dims = in->dims();
  auto img_var_name = op_info->Input("Image").front();
  auto img = scope->FindVar(img_var_name)->GetMutable<lite::Tensor>();
  auto img_dims = img->dims();
  // outputs
  auto boxes_var_name = op_info->Output("Boxes").front();
  auto boxes = scope->FindVar(boxes_var_name)->GetMutable<lite::Tensor>();
  auto var_var_name = op_info->Output("Variances").front();
  auto var = scope->FindVar(var_var_name)->GetMutable<lite::Tensor>();
  std::vector<float> expand_aspect_ratios;
  ExpandAspectRatios(param->aspect_ratios, param->flip, &expand_aspect_ratios);
  param->aspect_ratios.clear();
  for (size_t i = 0; i < expand_aspect_ratios.size(); i++) {
    param->aspect_ratios.push_back(expand_aspect_ratios[i]);
  }
86 87 88 89 90 91 92 93 94 95 96 97 98 99

  auto img_width = img_dims[3];
  auto img_height = img_dims[2];
  auto feature_width = in_dims[3];
  auto feature_height = in_dims[2];
  float step_width, step_height;
  if (param->step_w == 0.f || param->step_h == 0.f) {
    step_width = static_cast<float>(img_width) / feature_width;
    step_height = static_cast<float>(img_height) / feature_height;
  } else {
    step_width = param->step_w;
    step_height = param->step_h;
  }
  int num_priors = param->aspect_ratios.size() * param->min_sizes.size();
100
  if (param->max_sizes.size() > 0) {
101
    num_priors += param->max_sizes.size();
102
  }
103 104 105
  param->prior_num = num_priors;
  DDim shape_out({feature_height, feature_width, num_priors, 4});
  int32_t channel_size = feature_height * feature_width * num_priors * 4;
106 107 108 109 110
  boxes->Resize(shape_out);
  var->Resize(shape_out);
  float* cpu_data =
      static_cast<float*>(malloc(sizeof(float) * boxes->data_size() * 2));
  CHECK(cpu_data != nullptr);
111 112 113 114 115 116
  float* b_t = cpu_data;
  for (int h = 0; h < feature_height; ++h) {
    for (int w = 0; w < feature_width; ++w) {
      float center_x = (w + param->offset) * step_width;
      float center_y = (h + param->offset) * step_height;
      float box_width, box_height;
117
      for (size_t s = 0; s < param->min_sizes.size(); ++s) {
118
        auto min_size = param->min_sizes[s];
119
        if (param->min_max_aspect_ratios_order) {
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
          box_width = box_height = min_size / 2.;
          b_t[0] = (center_x - box_width) / img_width;
          b_t[1] = (center_y - box_height) / img_height;
          b_t[2] = (center_x + box_width) / img_width;
          b_t[3] = (center_y + box_height) / img_height;
          b_t += 4;
          if (param->max_sizes.size() > 0) {
            auto max_size = param->max_sizes[s];
            // square prior with size sqrt(minSize * maxSize)
            box_width = box_height = sqrt(min_size * max_size) / 2.;
            b_t[0] = (center_x - box_width) / img_width;
            b_t[1] = (center_y - box_height) / img_height;
            b_t[2] = (center_x + box_width) / img_width;
            b_t[3] = (center_y + box_height) / img_height;
            b_t += 4;
          }
          // priors with different aspect ratios
          for (size_t r = 0; r < param->aspect_ratios.size(); ++r) {
            float ar = param->aspect_ratios[r];
            if (fabs(ar - 1.) < 1e-6) {
              continue;
            }
            box_width = min_size * sqrt(ar) / 2.;
            box_height = min_size / sqrt(ar) / 2.;
            b_t[0] = (center_x - box_width) / img_width;
            b_t[1] = (center_y - box_height) / img_height;
            b_t[2] = (center_x + box_width) / img_width;
            b_t[3] = (center_y + box_height) / img_height;
            b_t += 4;
          }
150
        } else {
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
          // priors with different aspect ratios
          for (size_t r = 0; r < param->aspect_ratios.size(); ++r) {
            float ar = param->aspect_ratios[r];
            box_width = min_size * sqrt(ar) / 2.;
            box_height = min_size / sqrt(ar) / 2.;
            b_t[0] = (center_x - box_width) / img_width;
            b_t[1] = (center_y - box_height) / img_height;
            b_t[2] = (center_x + box_width) / img_width;
            b_t[3] = (center_y + box_height) / img_height;
            b_t += 4;
          }
          if (param->max_sizes.size() > 0) {
            auto max_size = param->max_sizes[s];
            // square prior with size sqrt(minSize * maxSize)
            box_width = box_height = sqrt(min_size * max_size) / 2.;
            b_t[0] = (center_x - box_width) / img_width;
            b_t[1] = (center_y - box_height) / img_height;
            b_t[2] = (center_x + box_width) / img_width;
            b_t[3] = (center_y + box_height) / img_height;
            b_t += 4;
          }
172 173 174 175
        }
      }
    }
  }
176

177 178 179 180 181 182 183
  if (param->clip) {
    for (int32_t d = 0; d < channel_size; ++d) {
      cpu_data[d] = std::min(std::max(cpu_data[d], 0.f), 1.f);
    }
  }
  float* ptr = cpu_data + channel_size;
  int count = 0;
184 185
  for (int32_t h = 0; h < feature_height; ++h) {
    for (int32_t w = 0; w < feature_width; ++w) {
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
      for (int32_t i = 0; i < param->prior_num; ++i) {
        for (int j = 0; j < 4; ++j) {
          ptr[count] = param->variances[j];
          ++count;
        }
      }
    }
  }
  return cpu_data;
}

int PriorBoxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto scope = op->scope();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  // inputs
  auto in_var_name = op_info->Input("Input").front();
  auto in = scope->FindVar(in_var_name)->GetMutable<lite::Tensor>();
  auto in_dims = in->dims();
  auto img_var_name = op_info->Input("Image").front();
  auto img = scope->FindVar(img_var_name)->GetMutable<lite::Tensor>();
  auto img_dims = img->dims();
  std::vector<int32_t> i_input_shape_data(in_dims.size());
  for (size_t i = 0; i < in_dims.size(); i++) {
    i_input_shape_data[i] = static_cast<int32_t>(in_dims[i]);
  }
  // outputs
  auto boxes_var_name = op_info->Output("Boxes").front();
  auto boxes = scope->FindVar(boxes_var_name)->GetMutable<lite::Tensor>();
  auto var_var_name = op_info->Output("Variances").front();
  // param
  st_priorbox_param param;
  param.clip = op_info->GetAttr<bool>("clip");
  param.min_sizes = op_info->GetAttr<std::vector<float>>("min_sizes");
  param.max_sizes = op_info->GetAttr<std::vector<float>>("max_sizes");
  param.aspect_ratios = op_info->GetAttr<std::vector<float>>("aspect_ratios");
  param.variances = op_info->GetAttr<std::vector<float>>("variances");
  param.offset = op_info->GetAttr<float>("offset");
  if (op_info->HasAttr("flip")) {
    param.flip = op_info->GetAttr<bool>("flip");
  }
  if (op_info->HasAttr("img_w")) {
    param.img_w = op_info->GetAttr<int32_t>("img_w");
  }
  if (op_info->HasAttr("img_h")) {
    param.img_h = op_info->GetAttr<int32_t>("img_h");
  }
  if (op_info->HasAttr("step_w")) {
    param.step_w = op_info->GetAttr<float>("step_w");
  }
  if (op_info->HasAttr("step_h")) {
    param.step_h = op_info->GetAttr<float>("step_h");
  }
  if (op_info->HasAttr("prior_num")) {
    param.prior_num = op_info->GetAttr<int32_t>("prior_num");
  }
  if (op_info->HasAttr("min_max_aspect_ratios_order")) {
    param.min_max_aspect_ratios_order =
        op_info->GetAttr<bool>("min_max_aspect_ratios_order");
  }
  float* cpu_data = compute_priorbox_kernel(op, &param);
  auto boxes_dims = boxes->dims();
251 252 253 254 255
  std::vector<int32_t> i_pri_out_shape_data(3);
  i_pri_out_shape_data[0] = 1;
  i_pri_out_shape_data[1] = 2;
  i_pri_out_shape_data[2] = boxes->data_size();
  auto bm_priorbox_name = lite::subgraph::bm::UniqueName("bm_priorbox");
256 257 258 259 260
  add_priorbox_layer(graph->GetCompilerHandle(),
                     const_cast<const int*>(&i_input_shape_data[0]),
                     in_dims.size(),
                     static_cast<const char*>(in_var_name.c_str()),
                     const_cast<const int*>(&i_pri_out_shape_data[0]),
261 262
                     3,
                     static_cast<const char*>(bm_priorbox_name.c_str()),
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
                     static_cast<const float*>(cpu_data),
                     param.min_sizes.size(),
                     const_cast<const float*>(&param.min_sizes[0]),
                     param.max_sizes.size(),
                     const_cast<const float*>(&param.max_sizes[0]),
                     param.aspect_ratios.size(),
                     const_cast<const float*>(&param.aspect_ratios[0]),
                     static_cast<int>(param.flip),
                     static_cast<int>(param.clip),
                     param.variances.size(),
                     const_cast<const float*>(&param.variances[0]),
                     param.img_h,
                     param.img_w,
                     param.step_h,
                     param.step_w,
                     param.offset);
  int32_t* shape[2];
280
  int32_t dim[2];
281
  const char* name[2];
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  int32_t dim_size = 3;
  dim[0] = dim_size;
  dim[1] = dim_size;
  std::vector<int32_t> i_split_shape_data(dim_size);
  for (size_t i = 0; i < dim_size; i++) {
    i_split_shape_data[i] = i_pri_out_shape_data[i];
  }
  i_split_shape_data[1] /= 2;
  shape[0] = &i_split_shape_data[0];
  shape[1] = &i_split_shape_data[0];
  name[0] = static_cast<const char*>(
      lite::subgraph::bm::UniqueName("bm_boxes").c_str());
  name[1] = static_cast<const char*>(
      lite::subgraph::bm::UniqueName("bm_boxes_var").c_str());
  int split_size[2];
  split_size[0] = shape[0][1];
  split_size[1] = shape[1][1];
299 300
  add_tf_split_layer(graph->GetCompilerHandle(),
                     const_cast<const int*>(&i_pri_out_shape_data[0]),
301 302
                     3,
                     static_cast<const char*>(bm_priorbox_name.c_str()),
303 304 305 306
                     2,
                     shape,
                     dim,
                     name,
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
                     3,
                     1,
                     split_size,
                     2);
  // final output
  std::vector<int32_t> i_output_shape_data(boxes_dims.size());
  for (size_t i = 0; i < boxes_dims.size(); i++) {
    i_output_shape_data[i] = static_cast<int32_t>(boxes_dims[i]);
  }
  add_reshape_layer_v2(graph->GetCompilerHandle(),
                       name[0],
                       shape[0],
                       3,
                       static_cast<const char*>(boxes_var_name.c_str()),
                       const_cast<const int*>(&i_output_shape_data[0]),
                       boxes_dims.size());
  add_reshape_layer_v2(graph->GetCompilerHandle(),
                       name[1],
                       shape[1],
                       3,
                       static_cast<const char*>(var_var_name.c_str()),
                       const_cast<const int*>(&i_output_shape_data[0]),
                       boxes_dims.size());
330 331 332 333 334 335 336 337 338 339 340 341 342
  graph->AddNode(boxes_var_name);
  graph->AddNode(var_var_name);
  return SUCCESS;
}

}  // namespace bm
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(prior_box,
                         kBM,
                         paddle::lite::subgraph::bm::PriorBoxConverter);