// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "lite/kernels/bm/bridges/graph.h" #include "lite/kernels/bm/bridges/utility.h" #include "lite/kernels/npu/bridges/registry.h" namespace paddle { namespace lite { namespace subgraph { namespace bm { typedef struct __tag_st_priorbox_param { std::vector min_sizes; std::vector max_sizes; std::vector aspect_ratios; std::vector variances; float step_w; float step_h; float offset; int32_t img_w; int32_t img_h; int32_t prior_num; bool min_max_aspect_ratios_order; bool clip; bool flip; } st_priorbox_param; inline void ExpandAspectRatios(const std::vector& input_aspect_ratior, bool flip, std::vector* output_aspect_ratior) { constexpr float epsilon = 1e-6; output_aspect_ratior->clear(); output_aspect_ratior->push_back(1.0f); for (size_t i = 0; i < input_aspect_ratior.size(); ++i) { float ar = input_aspect_ratior[i]; bool already_exist = false; for (size_t j = 0; j < output_aspect_ratior->size(); ++j) { if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) { already_exist = true; break; } } if (!already_exist) { output_aspect_ratior->push_back(ar); if (flip) { output_aspect_ratior->push_back(1.0f / ar); } } } } float* compute_priorbox_kernel(OpLite* op, st_priorbox_param* param) { auto op_info = op->op_info(); auto scope = op->scope(); // inputs auto in_var_name = op_info->Input("Input").front(); auto in = scope->FindVar(in_var_name)->GetMutable(); auto in_dims = in->dims(); auto img_var_name = op_info->Input("Image").front(); auto img = scope->FindVar(img_var_name)->GetMutable(); auto img_dims = img->dims(); // outputs auto boxes_var_name = op_info->Output("Boxes").front(); auto boxes = scope->FindVar(boxes_var_name)->GetMutable(); auto var_var_name = op_info->Output("Variances").front(); auto var = scope->FindVar(var_var_name)->GetMutable(); std::vector expand_aspect_ratios; ExpandAspectRatios(param->aspect_ratios, param->flip, &expand_aspect_ratios); param->aspect_ratios.clear(); for (size_t i = 0; i < expand_aspect_ratios.size(); i++) { param->aspect_ratios.push_back(expand_aspect_ratios[i]); } auto img_width = img_dims[3]; auto img_height = img_dims[2]; auto feature_width = in_dims[3]; auto feature_height = in_dims[2]; float step_width, step_height; if (param->step_w == 0.f || param->step_h == 0.f) { step_width = static_cast(img_width) / feature_width; step_height = static_cast(img_height) / feature_height; } else { step_width = param->step_w; step_height = param->step_h; } int num_priors = param->aspect_ratios.size() * param->min_sizes.size(); if (param->max_sizes.size() > 0) { num_priors += param->max_sizes.size(); } param->prior_num = num_priors; DDim shape_out({feature_height, feature_width, num_priors, 4}); int32_t channel_size = feature_height * feature_width * num_priors * 4; boxes->Resize(shape_out); var->Resize(shape_out); float* cpu_data = static_cast(malloc(sizeof(float) * boxes->data_size() * 2)); CHECK(cpu_data != nullptr); float* b_t = cpu_data; for (int h = 0; h < feature_height; ++h) { for (int w = 0; w < feature_width; ++w) { float center_x = (w + param->offset) * step_width; float center_y = (h + param->offset) * step_height; float box_width, box_height; for (size_t s = 0; s < param->min_sizes.size(); ++s) { auto min_size = param->min_sizes[s]; if (param->min_max_aspect_ratios_order) { box_width = box_height = min_size / 2.; b_t[0] = (center_x - box_width) / img_width; b_t[1] = (center_y - box_height) / img_height; b_t[2] = (center_x + box_width) / img_width; b_t[3] = (center_y + box_height) / img_height; b_t += 4; if (param->max_sizes.size() > 0) { auto max_size = param->max_sizes[s]; // square prior with size sqrt(minSize * maxSize) box_width = box_height = sqrt(min_size * max_size) / 2.; b_t[0] = (center_x - box_width) / img_width; b_t[1] = (center_y - box_height) / img_height; b_t[2] = (center_x + box_width) / img_width; b_t[3] = (center_y + box_height) / img_height; b_t += 4; } // priors with different aspect ratios for (size_t r = 0; r < param->aspect_ratios.size(); ++r) { float ar = param->aspect_ratios[r]; if (fabs(ar - 1.) < 1e-6) { continue; } box_width = min_size * sqrt(ar) / 2.; box_height = min_size / sqrt(ar) / 2.; b_t[0] = (center_x - box_width) / img_width; b_t[1] = (center_y - box_height) / img_height; b_t[2] = (center_x + box_width) / img_width; b_t[3] = (center_y + box_height) / img_height; b_t += 4; } } else { // priors with different aspect ratios for (size_t r = 0; r < param->aspect_ratios.size(); ++r) { float ar = param->aspect_ratios[r]; box_width = min_size * sqrt(ar) / 2.; box_height = min_size / sqrt(ar) / 2.; b_t[0] = (center_x - box_width) / img_width; b_t[1] = (center_y - box_height) / img_height; b_t[2] = (center_x + box_width) / img_width; b_t[3] = (center_y + box_height) / img_height; b_t += 4; } if (param->max_sizes.size() > 0) { auto max_size = param->max_sizes[s]; // square prior with size sqrt(minSize * maxSize) box_width = box_height = sqrt(min_size * max_size) / 2.; b_t[0] = (center_x - box_width) / img_width; b_t[1] = (center_y - box_height) / img_height; b_t[2] = (center_x + box_width) / img_width; b_t[3] = (center_y + box_height) / img_height; b_t += 4; } } } } } if (param->clip) { for (int32_t d = 0; d < channel_size; ++d) { cpu_data[d] = std::min(std::max(cpu_data[d], 0.f), 1.f); } } float* ptr = cpu_data + channel_size; int count = 0; for (int32_t h = 0; h < feature_height; ++h) { for (int32_t w = 0; w < feature_width; ++w) { for (int32_t i = 0; i < param->prior_num; ++i) { for (int j = 0; j < 4; ++j) { ptr[count] = param->variances[j]; ++count; } } } } return cpu_data; } int PriorBoxConverter(void* ctx, OpLite* op, KernelBase* kernel) { CHECK(ctx != nullptr); CHECK(op != nullptr); auto graph = static_cast(ctx); auto scope = op->scope(); auto op_info = op->op_info(); auto op_type = op_info->Type(); // inputs auto in_var_name = op_info->Input("Input").front(); auto in = scope->FindVar(in_var_name)->GetMutable(); auto in_dims = in->dims(); auto img_var_name = op_info->Input("Image").front(); auto img = scope->FindVar(img_var_name)->GetMutable(); auto img_dims = img->dims(); std::vector i_input_shape_data(in_dims.size()); for (size_t i = 0; i < in_dims.size(); i++) { i_input_shape_data[i] = static_cast(in_dims[i]); } // outputs auto boxes_var_name = op_info->Output("Boxes").front(); auto boxes = scope->FindVar(boxes_var_name)->GetMutable(); auto var_var_name = op_info->Output("Variances").front(); // param st_priorbox_param param; param.clip = op_info->GetAttr("clip"); param.min_sizes = op_info->GetAttr>("min_sizes"); param.max_sizes = op_info->GetAttr>("max_sizes"); param.aspect_ratios = op_info->GetAttr>("aspect_ratios"); param.variances = op_info->GetAttr>("variances"); param.offset = op_info->GetAttr("offset"); if (op_info->HasAttr("flip")) { param.flip = op_info->GetAttr("flip"); } if (op_info->HasAttr("img_w")) { param.img_w = op_info->GetAttr("img_w"); } if (op_info->HasAttr("img_h")) { param.img_h = op_info->GetAttr("img_h"); } if (op_info->HasAttr("step_w")) { param.step_w = op_info->GetAttr("step_w"); } if (op_info->HasAttr("step_h")) { param.step_h = op_info->GetAttr("step_h"); } if (op_info->HasAttr("prior_num")) { param.prior_num = op_info->GetAttr("prior_num"); } if (op_info->HasAttr("min_max_aspect_ratios_order")) { param.min_max_aspect_ratios_order = op_info->GetAttr("min_max_aspect_ratios_order"); } float* cpu_data = compute_priorbox_kernel(op, ¶m); auto boxes_dims = boxes->dims(); std::vector i_pri_out_shape_data(3); i_pri_out_shape_data[0] = 1; i_pri_out_shape_data[1] = 2; i_pri_out_shape_data[2] = boxes->data_size(); auto bm_priorbox_name = lite::subgraph::bm::UniqueName("bm_priorbox"); add_priorbox_layer(graph->GetCompilerHandle(), const_cast(&i_input_shape_data[0]), in_dims.size(), static_cast(in_var_name.c_str()), const_cast(&i_pri_out_shape_data[0]), 3, static_cast(bm_priorbox_name.c_str()), static_cast(cpu_data), param.min_sizes.size(), const_cast(¶m.min_sizes[0]), param.max_sizes.size(), const_cast(¶m.max_sizes[0]), param.aspect_ratios.size(), const_cast(¶m.aspect_ratios[0]), static_cast(param.flip), static_cast(param.clip), param.variances.size(), const_cast(¶m.variances[0]), param.img_h, param.img_w, param.step_h, param.step_w, param.offset); int32_t* shape[2]; int32_t dim[2]; const char* name[2]; int32_t dim_size = 3; dim[0] = dim_size; dim[1] = dim_size; std::vector i_split_shape_data(dim_size); for (size_t i = 0; i < dim_size; i++) { i_split_shape_data[i] = i_pri_out_shape_data[i]; } i_split_shape_data[1] /= 2; shape[0] = &i_split_shape_data[0]; shape[1] = &i_split_shape_data[0]; name[0] = static_cast( lite::subgraph::bm::UniqueName("bm_boxes").c_str()); name[1] = static_cast( lite::subgraph::bm::UniqueName("bm_boxes_var").c_str()); int split_size[2]; split_size[0] = shape[0][1]; split_size[1] = shape[1][1]; add_tf_split_layer(graph->GetCompilerHandle(), const_cast(&i_pri_out_shape_data[0]), 3, static_cast(bm_priorbox_name.c_str()), 2, shape, dim, name, 3, 1, split_size, 2); // final output std::vector i_output_shape_data(boxes_dims.size()); for (size_t i = 0; i < boxes_dims.size(); i++) { i_output_shape_data[i] = static_cast(boxes_dims[i]); } add_reshape_layer_v2(graph->GetCompilerHandle(), name[0], shape[0], 3, static_cast(boxes_var_name.c_str()), const_cast(&i_output_shape_data[0]), boxes_dims.size()); add_reshape_layer_v2(graph->GetCompilerHandle(), name[1], shape[1], 3, static_cast(var_var_name.c_str()), const_cast(&i_output_shape_data[0]), boxes_dims.size()); graph->AddNode(boxes_var_name); graph->AddNode(var_var_name); return SUCCESS; } } // namespace bm } // namespace subgraph } // namespace lite } // namespace paddle REGISTER_SUBGRAPH_BRIDGE(prior_box, kBM, paddle::lite::subgraph::bm::PriorBoxConverter);