activation_kernel.cpp 3.8 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "operators/kernel/activation_kernel.h"
16 17
#include "common/types.h"
#include "operators/math/activation.h"
18 19 20
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
E
eclipsess 已提交
21 22 23 24

namespace paddle_mobile {
namespace operators {

25
template <typename Dtype, ActivationType Act>
26
struct ActivationCompute {
27 28 29
  void operator()(const Tensor *input, Tensor *output) {}
};

30
template <ActivationType Act>
31
struct ActivationCompute<float, Act> {
32 33 34 35 36 37 38 39
  void operator()(const Tensor *input, Tensor *output) {
    const float *x = input->data<float>();
    float *y = output->mutable_data<float>();
    size_t remain = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
    size_t loop = remain >> 4;
    remain = remain & 0xF;

Z
zhaojiaying01 已提交
40
#pragma omp parallel for
41 42 43 44 45 46 47
    for (size_t i = 0; i < loop; ++i) {
      const float *local_x = x + (i << 4);
      float *local_y = y + (i << 4);
      float32x4_t r0 = vld1q_f32(local_x);
      float32x4_t r1 = vld1q_f32(local_x + 4);
      float32x4_t r2 = vld1q_f32(local_x + 8);
      float32x4_t r3 = vld1q_f32(local_x + 12);
48 49 50 51
      r0 = math::vActiveq_f32<Act>(r0);
      r1 = math::vActiveq_f32<Act>(r1);
      r2 = math::vActiveq_f32<Act>(r2);
      r3 = math::vActiveq_f32<Act>(r3);
52 53 54 55 56 57 58 59 60
      vst1q_f32(local_y, r0);
      vst1q_f32(local_y + 4, r1);
      vst1q_f32(local_y + 8, r2);
      vst1q_f32(local_y + 12, r3);
    }
    x += (loop << 4);
    y += (loop << 4);
#endif
    for (size_t i = 0; i < remain; ++i) {
61
      y[i] = math::Active<Act>(x[i]);
62 63 64 65
    }
  }
};

66
#ifdef RELU_OP
L
liuruilong 已提交
67
template <>
N
nhzlx 已提交
68
bool ReluKernel<CPU, float>::Init(ReluParam<CPU> *param) {
L
liuruilong 已提交
69 70 71
  return true;
}

E
eclipsess 已提交
72
template <>
L
liuruilong 已提交
73
void ReluKernel<CPU, float>::Compute(const ReluParam<CPU> &param) {
H
hjchen2 已提交
74 75
  const LoDTensor *input = param.InputX();
  LoDTensor *output = param.Out();
76
  ActivationCompute<float, RELU>()(input, output);
H
hjchen2 已提交
77
  output->set_lod(input->lod());
78 79 80 81 82 83 84 85 86
}

template <>
bool Relu6Kernel<CPU, float>::Init(ReluParam<CPU> *param) {
  return true;
}

template <>
void Relu6Kernel<CPU, float>::Compute(const ReluParam<CPU> &param) {
H
hjchen2 已提交
87 88
  const LoDTensor *input = param.InputX();
  LoDTensor *output = param.Out();
89
  ActivationCompute<float, RELU6>()(input, output);
H
hjchen2 已提交
90
  output->set_lod(input->lod());
E
eclipsess 已提交
91
}
92
#endif
E
eclipsess 已提交
93

94 95 96 97 98 99 100 101
#ifdef SIGMOID_OP
template <>
bool SigmoidKernel<CPU, float>::Init(SigmoidParam<CPU> *param) {
  return true;
}

template <>
void SigmoidKernel<CPU, float>::Compute(const SigmoidParam<CPU> &param) {
H
hjchen2 已提交
102 103
  const LoDTensor *input = param.InputX();
  LoDTensor *output = param.Out();
104
  ActivationCompute<float, SIGMOID>()(input, output);
H
hjchen2 已提交
105
  output->set_lod(input->lod());
106 107
}
#endif
L
liuruilong 已提交
108

109 110
#ifdef TANH_OP
template <>
111
bool TanhKernel<CPU, float>::Init(TanhParam<CPU> *param) {
112 113 114 115 116
  return true;
}

template <>
void TanhKernel<CPU, float>::Compute(const TanhParam<CPU> &param) {
H
hjchen2 已提交
117 118
  const LoDTensor *input = param.InputX();
  LoDTensor *output = param.Out();
119
  ActivationCompute<float, TANH>()(input, output);
H
hjchen2 已提交
120
  output->set_lod(input->lod());
121
}
L
liuruilong 已提交
122
#endif
123

124 125 126 127 128 129 130 131
#ifdef LOG_OP
template <>
bool LogKernel<CPU, float>::Init(ReluParam<CPU> *param) {
  return true;
}

template <>
void LogKernel<CPU, float>::Compute(const ReluParam<CPU> &param) {
H
hjchen2 已提交
132 133
  const LoDTensor *input = param.InputX();
  LoDTensor *output = param.Out();
134
  ActivationCompute<float, LOG>()(input, output);
H
hjchen2 已提交
135
  output->set_lod(input->lod());
136 137 138
}
#endif

139 140
}  // namespace operators
}  // namespace paddle_mobile