Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
8162ba9a
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8162ba9a
编写于
5月 28, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
code style
上级
e89a45d7
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
198 addition
and
197 deletion
+198
-197
src/operators/kernel/arm/batchnorm_kernel.cpp
src/operators/kernel/arm/batchnorm_kernel.cpp
+11
-11
src/operators/kernel/arm/concat_kernel.cpp
src/operators/kernel/arm/concat_kernel.cpp
+28
-28
src/operators/kernel/arm/relu_kernel.cpp
src/operators/kernel/arm/relu_kernel.cpp
+22
-21
src/operators/math/elementwise_op_function.h
src/operators/math/elementwise_op_function.h
+137
-137
未找到文件。
src/operators/kernel/arm/batchnorm_kernel.cpp
浏览文件 @
8162ba9a
...
...
@@ -65,17 +65,17 @@ void BatchNormKernel<CPU, float>::Compute(const BatchNormParam ¶m) const {
/// ((x - est_mean) * (inv_var) * scale + bias equal to
/// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
-
mean_ptr
[
i
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
int
tmp_index
=
n
*
stride0
+
i
*
stride1
+
h
*
stride2
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
int
index
=
tmp_index
+
w
;
out_ptr
[
index
]
=
input_x_ptr
[
index
]
*
new_scale_ptr
[
i
]
+
new_bias_ptr
[
i
];
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
-
mean_ptr
[
i
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
int
tmp_index
=
n
*
stride0
+
i
*
stride1
+
h
*
stride2
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
int
index
=
tmp_index
+
w
;
out_ptr
[
index
]
=
input_x_ptr
[
index
]
*
new_scale_ptr
[
i
]
+
new_bias_ptr
[
i
];
}
}
}
...
...
src/operators/kernel/arm/concat_kernel.cpp
浏览文件 @
8162ba9a
...
...
@@ -84,36 +84,36 @@ void StridedNumelCopyWithAxis(int64_t axis, T *dst,
}
}
template
<
>
void
ConcatKernel
<
CPU
,
float
>::
Compute
(
const
ConcatParam
&
param
)
const
{
auto
inputs
=
param
.
Inputs
();
auto
*
out
=
param
.
Out
();
int64_t
axis
=
param
.
Axis
();
out
->
mutable_data
<
float
>
();
template
<
>
void
ConcatKernel
<
CPU
,
float
>::
Compute
(
const
ConcatParam
&
param
)
const
{
auto
inputs
=
param
.
Inputs
();
auto
*
out
=
param
.
Out
();
int64_t
axis
=
param
.
Axis
();
out
->
mutable_data
<
float
>
();
/// Sometimes direct copies will be faster, this maybe need deeply analysis.
if
(
axis
==
0
&&
inputs
.
size
()
<
10
)
{
size_t
output_offset
=
0
;
for
(
auto
*
in
:
inputs
)
{
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
auto
dst
=
out
->
data
<
float
>
()
+
output_offset
;
auto
src
=
in
->
data
<
float
>
();
PADDLE_MOBILE_ENFORCE
(
in_stride
.
size
()
==
out_stride
.
size
(),
"src and dst tensor should have the same dims size."
);
memory
::
Copy
(
dst
,
src
,
sizeof
(
float
)
*
in_stride
[
0
]);
output_offset
+=
in_stride
[
0
];
}
}
else
{
std
::
vector
<
framework
::
Tensor
>
inputs_concat
(
inputs
.
size
());
for
(
int
j
=
0
;
j
<
inputs
.
size
();
++
j
)
{
inputs_concat
[
j
]
=
*
inputs
[
j
];
}
ConcatFunctor
<
float
>
concat_functor
;
concat_functor
(
inputs_concat
,
static_cast
<
int
>
(
axis
),
out
);
}
/// Sometimes direct copies will be faster, this maybe need deeply analysis.
if
(
axis
==
0
&&
inputs
.
size
()
<
10
)
{
size_t
output_offset
=
0
;
for
(
auto
*
in
:
inputs
)
{
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
auto
dst
=
out
->
data
<
float
>
()
+
output_offset
;
auto
src
=
in
->
data
<
float
>
();
PADDLE_MOBILE_ENFORCE
(
in_stride
.
size
()
==
out_stride
.
size
(),
"src and dst tensor should have the same dims size."
);
memory
::
Copy
(
dst
,
src
,
sizeof
(
float
)
*
in_stride
[
0
]);
output_offset
+=
in_stride
[
0
];
}
}
else
{
std
::
vector
<
framework
::
Tensor
>
inputs_concat
(
inputs
.
size
());
for
(
int
j
=
0
;
j
<
inputs
.
size
();
++
j
)
{
inputs_concat
[
j
]
=
*
inputs
[
j
];
}
ConcatFunctor
<
float
>
concat_functor
;
concat_functor
(
inputs_concat
,
static_cast
<
int
>
(
axis
),
out
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
src/operators/kernel/arm/relu_kernel.cpp
浏览文件 @
8162ba9a
...
...
@@ -14,30 +14,31 @@ limitations under the License. */
#pragma once
#include <operators/math/transform.h>
#include "operators/kernel/relu_kernel.h"
#include <operators/math/transform.h>
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
T
>
struct
ReluFunctor
{
inline
T
operator
()(
T
in
)
const
{
return
in
>
0
?
in
:
0
;
}
};
template
<
>
void
ReluKernel
<
CPU
,
float
>::
Compute
(
const
ReluParam
&
param
)
const
{
const
auto
*
input_x
=
param
.
InputX
();
auto
*
input_x_ptr
=
input_x
->
data
<
float
>
();
auto
*
out
=
param
.
Out
();
auto
*
out_ptr
=
out
->
mutable_data
<
float
>
();
ReluFunctor
<
float
>
func_
;
math
::
Transform
trans
;
trans
(
input_x_ptr
,
input_x_ptr
+
input_x
->
numel
(),
out_ptr
,
func_
);
// for (int i = 0; i < input_x->numel(); i++) {
// out_ptr[i] = input_x_ptr[i] > 0 ? input_x_ptr[i] : 0;
// }
}
template
<
typename
T
>
struct
ReluFunctor
{
inline
T
operator
()(
T
in
)
const
{
return
in
>
0
?
in
:
0
;
}
};
template
<
>
void
ReluKernel
<
CPU
,
float
>::
Compute
(
const
ReluParam
&
param
)
const
{
const
auto
*
input_x
=
param
.
InputX
();
auto
*
input_x_ptr
=
input_x
->
data
<
float
>
();
auto
*
out
=
param
.
Out
();
auto
*
out_ptr
=
out
->
mutable_data
<
float
>
();
ReluFunctor
<
float
>
func_
;
math
::
Transform
trans
;
trans
(
input_x_ptr
,
input_x_ptr
+
input_x
->
numel
(),
out_ptr
,
func_
);
// for (int i = 0; i < input_x->numel(); i++) {
// out_ptr[i] = input_x_ptr[i] > 0 ? input_x_ptr[i] : 0;
// }
}
}
// namespace operators
}
// namespace paddle_mobile
\ No newline at end of file
}
// namespace paddle_mobile
src/operators/math/elementwise_op_function.h
浏览文件 @
8162ba9a
...
...
@@ -18,7 +18,7 @@ limitations under the License. */
#define UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
namespace
paddle_mobile
{
namespace
operators
{
namespace
operators
{
/*
* Out = X ⊙ Y
...
...
@@ -31,148 +31,148 @@ namespace paddle_mobile {
* pre=2*3, n=4*5, post=1
* x.shape(6, 20, 1) * y.shape(1, 20, 1).broadcast(6, 20, 1)
*/
inline
void
get_mid_dims
(
const
framework
::
DDim
&
x_dims
,
const
framework
::
DDim
&
y_dims
,
const
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
)
{
*
pre
=
1
;
*
n
=
1
;
*
post
=
1
;
// compute pre
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
assert
(
x_dims
[
i
+
axis
]
==
y_dims
[
i
]);
/// "Broadcast dimension mismatch.");
(
*
n
)
*=
y_dims
[
i
];
}
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
(
*
post
)
*=
x_dims
[
i
];
}
}
inline
void
get_mid_dims
(
const
framework
::
DDim
&
x_dims
,
const
framework
::
DDim
&
y_dims
,
const
int
axis
,
int
*
pre
,
int
*
n
,
int
*
post
)
{
*
pre
=
1
;
*
n
=
1
;
*
post
=
1
;
// compute pre
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
(
*
pre
)
*=
x_dims
[
i
];
}
for
(
int
i
=
0
;
i
<
y_dims
.
size
();
++
i
)
{
assert
(
x_dims
[
i
+
axis
]
==
y_dims
[
i
]);
/// "Broadcast dimension mismatch.");
(
*
n
)
*=
y_dims
[
i
];
}
for
(
int
i
=
axis
+
y_dims
.
size
();
i
<
x_dims
.
size
();
++
i
)
{
(
*
post
)
*=
x_dims
[
i
];
}
}
/// remove dims tail 1. (4,20,1,1) -> (4,20)
inline
void
trim_trailing_singular_dims
(
framework
::
DDim
*
dims
)
{
// Remove trailing dimensions of size 1 for y
auto
actual_dims_size
=
dims
->
size
();
for
(;
actual_dims_size
!=
0
;
--
actual_dims_size
)
{
if
((
*
dims
)[
actual_dims_size
-
1
]
!=
1
)
break
;
}
if
(
actual_dims_size
!=
dims
->
size
())
{
auto
actual_dims
=
framework
::
vectorize
(
*
dims
);
actual_dims
.
resize
(
actual_dims_size
);
*
dims
=
framework
::
make_ddim
(
actual_dims
);
}
}
inline
void
trim_trailing_singular_dims
(
framework
::
DDim
*
dims
)
{
// Remove trailing dimensions of size 1 for y
auto
actual_dims_size
=
dims
->
size
();
for
(;
actual_dims_size
!=
0
;
--
actual_dims_size
)
{
if
((
*
dims
)[
actual_dims_size
-
1
]
!=
1
)
break
;
}
if
(
actual_dims_size
!=
dims
->
size
())
{
auto
actual_dims
=
framework
::
vectorize
(
*
dims
);
actual_dims
.
resize
(
actual_dims_size
);
*
dims
=
framework
::
make_ddim
(
actual_dims
);
}
}
/// (4,20,2)+(20,): (20,) just as (20,1), when move 2 strides in last
/// dimension
/// in (4,20,2) is 2 ,
/// (20,1) move 1 stride , to fill(add) 2 element with the same number.
template
<
typename
T
>
class
MidWiseTransformIterator
{
public:
MidWiseTransformIterator
(
const
T
*
ptr
,
int
n
,
int
post
)
:
ptr_
(
ptr
),
i_
(
0
),
j_
(
0
),
n_
(
n
),
post_
(
post
)
{}
MidWiseTransformIterator
<
T
>
&
operator
++
()
{
if
(
post_
!=
1
)
{
++
j_
;
if
(
UNLIKELY
(
j_
==
post_
))
{
++
i_
;
j_
=
0
;
if
(
UNLIKELY
(
i_
==
n_
))
{
i_
=
0
;
}
}
return
*
this
;
}
else
{
++
i_
;
if
(
UNLIKELY
(
i_
==
n_
))
{
i_
=
0
;
}
return
*
this
;
}
}
bool
operator
==
(
const
MidWiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
==
&
(
*
rhs
);
}
bool
operator
!=
(
const
MidWiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
!=
&
(
*
rhs
);
}
const
T
&
operator
*
()
{
return
ptr_
[
i_
];
}
private:
const
T
*
ptr_
;
int64_t
i_
;
int64_t
j_
;
int64_t
n_
;
int64_t
post_
;
};
template
<
typename
Functor
,
typename
T
,
typename
OutType
=
T
>
class
TransformFunctor
{
public:
TransformFunctor
(
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
,
Functor
func
)
:
x_
(
x
->
data
<
T
>
()),
y_
(
y
->
data
<
T
>
()),
z_
(
z
->
mutable_data
<
OutType
>
()),
nx_
(
x
->
numel
()),
func_
(
func
)
{}
inline
void
Run
()
const
{
math
::
Transform
trans
;
// 同时执行func(x_, y_)传入z_。
trans
(
x_
,
x_
+
nx_
,
y_
,
z_
,
func_
);
}
inline
void
RunMidWise
(
int
n
,
int
pre
,
int
post
)
const
{
math
::
Transform
trans
;
trans
(
x_
,
x_
+
nx_
,
MidWiseTransformIterator
<
T
>
(
y_
,
n
,
post
),
z_
,
func_
);
}
private:
const
T
*
x_
;
const
T
*
y_
;
OutType
*
z_
;
int64_t
nx_
;
Functor
func_
;
};
template
<
typename
Functor
,
typename
T
,
typename
OutType
=
T
>
void
ElementwiseComputeEx
(
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
int
axis
,
Functor
func
,
framework
::
Tensor
*
z
)
{
TransformFunctor
<
Functor
,
T
,
OutType
>
functor
(
x
,
y
,
z
,
func
);
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
PADDLE_MOBILE_ENFORCE
(
x_dims
.
size
()
>=
y_dims
.
size
(),
"Rank of first input must >= rank of second input."
);
if
(
x_dims
==
y_dims
)
{
functor
.
Run
();
return
;
}
/// axis = -1 represent the last dimensions.
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
PADDLE_MOBILE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
trim_trailing_singular_dims
(
&
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
);
functor
.
RunMidWise
(
n
,
pre
,
post
);
template
<
typename
T
>
class
MidWiseTransformIterator
{
public:
MidWiseTransformIterator
(
const
T
*
ptr
,
int
n
,
int
post
)
:
ptr_
(
ptr
),
i_
(
0
),
j_
(
0
),
n_
(
n
),
post_
(
post
)
{}
MidWiseTransformIterator
<
T
>
&
operator
++
()
{
if
(
post_
!=
1
)
{
++
j_
;
if
(
UNLIKELY
(
j_
==
post_
))
{
++
i_
;
j_
=
0
;
if
(
UNLIKELY
(
i_
==
n_
))
{
i_
=
0
;
}
}
// namespace operators
}
return
*
this
;
}
else
{
++
i_
;
if
(
UNLIKELY
(
i_
==
n_
))
{
i_
=
0
;
}
return
*
this
;
}
}
bool
operator
==
(
const
MidWiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
==
&
(
*
rhs
);
}
bool
operator
!=
(
const
MidWiseTransformIterator
<
T
>
&
rhs
)
const
{
return
(
ptr_
+
i_
)
!=
&
(
*
rhs
);
}
const
T
&
operator
*
()
{
return
ptr_
[
i_
];
}
private:
const
T
*
ptr_
;
int64_t
i_
;
int64_t
j_
;
int64_t
n_
;
int64_t
post_
;
};
template
<
typename
Functor
,
typename
T
,
typename
OutType
=
T
>
class
TransformFunctor
{
public:
TransformFunctor
(
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
framework
::
Tensor
*
z
,
Functor
func
)
:
x_
(
x
->
data
<
T
>
()),
y_
(
y
->
data
<
T
>
()),
z_
(
z
->
mutable_data
<
OutType
>
()),
nx_
(
x
->
numel
()),
func_
(
func
)
{}
inline
void
Run
()
const
{
math
::
Transform
trans
;
// 同时执行func(x_, y_)传入z_。
trans
(
x_
,
x_
+
nx_
,
y_
,
z_
,
func_
);
}
inline
void
RunMidWise
(
int
n
,
int
pre
,
int
post
)
const
{
math
::
Transform
trans
;
trans
(
x_
,
x_
+
nx_
,
MidWiseTransformIterator
<
T
>
(
y_
,
n
,
post
),
z_
,
func_
);
}
private:
const
T
*
x_
;
const
T
*
y_
;
OutType
*
z_
;
int64_t
nx_
;
Functor
func_
;
};
template
<
typename
Functor
,
typename
T
,
typename
OutType
=
T
>
void
ElementwiseComputeEx
(
const
framework
::
Tensor
*
x
,
const
framework
::
Tensor
*
y
,
int
axis
,
Functor
func
,
framework
::
Tensor
*
z
)
{
TransformFunctor
<
Functor
,
T
,
OutType
>
functor
(
x
,
y
,
z
,
func
);
auto
x_dims
=
x
->
dims
();
auto
y_dims
=
y
->
dims
();
PADDLE_MOBILE_ENFORCE
(
x_dims
.
size
()
>=
y_dims
.
size
(),
"Rank of first input must >= rank of second input."
);
if
(
x_dims
==
y_dims
)
{
functor
.
Run
();
return
;
}
/// axis = -1 represent the last dimensions.
axis
=
(
axis
==
-
1
?
x_dims
.
size
()
-
y_dims
.
size
()
:
axis
);
PADDLE_MOBILE_ENFORCE
(
axis
>=
0
&&
axis
<
x_dims
.
size
(),
"Axis should be in range [0, x_dims)"
);
trim_trailing_singular_dims
(
&
y_dims
);
axis
=
(
y_dims
.
size
()
==
0
)
?
x_dims
.
size
()
:
axis
;
int
pre
,
n
,
post
;
get_mid_dims
(
x_dims
,
y_dims
,
axis
,
&
pre
,
&
n
,
&
post
);
functor
.
RunMidWise
(
n
,
pre
,
post
);
}
}
// namespace operators
}
// namespace paddle_mobile
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录