batch_norm_op.cc 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
22 23
namespace xpu {

24
int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
28 29
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[XPU] Converting " + op_type + "...";
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto scale_name = op_info->Input("Scale").front();
  auto scale_type = kernel->GetInputDeclType("Scale");
  CHECK(scale_type->precision() == PRECISION(kFloat));
  CHECK(scale_type->layout() == DATALAYOUT(kNCHW));
  auto scale = scope->FindMutableTensor(scale_name);
  auto bias_name = op_info->Input("Bias").front();
  auto bias_type = kernel->GetInputDeclType("Bias");
  CHECK(bias_type->precision() == PRECISION(kFloat));
  CHECK(bias_type->layout() == DATALAYOUT(kNCHW));
  auto bias = scope->FindMutableTensor(bias_name);
  auto mean_name = op_info->Input("Mean").front();
  auto mean_type = kernel->GetInputDeclType("Mean");
  CHECK(mean_type->precision() == PRECISION(kFloat));
  CHECK(mean_type->layout() == DATALAYOUT(kNCHW));
  auto mean = scope->FindMutableTensor(mean_name);
  auto variance_name = op_info->Input("Variance").front();
  auto variance_type = kernel->GetInputDeclType("Variance");
  CHECK(variance_type->precision() == PRECISION(kFloat));
  CHECK(variance_type->layout() == DATALAYOUT(kNCHW));
  auto variance = scope->FindMutableTensor(variance_name);
  auto y_name = op_info->Output("Y").front();
  auto y_type = kernel->GetOutputDeclType("Y");
  CHECK(y_type->precision() == PRECISION(kFloat));
  CHECK(y_type->layout() == DATALAYOUT(kNCHW));
64 65
  auto epsilon = op_info->GetAttr<float>("epsilon");

66 67 68 69 70 71 72
  // X node
  std::shared_ptr<xtcl::xExpr> x_node = nullptr;
  if (graph->HasNode(x_name)) {
    x_node = graph->GetNode(x_name);
  } else {
    x_node = graph->AddNode(x_name, x_dims);
  }
73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  // Scale, Bias, Mean, Variance node
  auto scale_const_node = graph->AddNode(scale_name, *scale);
  auto bias_const_node = graph->AddNode(bias_name, *bias);
  auto mean_const_node = graph->AddNode(mean_name, *mean);
  auto variance_const_node = graph->AddNode(variance_name, *variance);

  // Batch Norm node and extract the first field as the output node
  auto batch_norm_node = graph->builder_.CreateBatchNorm(*x_node,
                                                         *scale_const_node,
                                                         *bias_const_node,
                                                         *mean_const_node,
                                                         *variance_const_node,
                                                         1,
                                                         epsilon);
  graph->AddNode(y_name, graph->builder_.GetField(batch_norm_node, 0));
89
  return SUCCESS;
90 91 92
}

}  // namespace xpu
93
}  // namespace subgraph
94 95 96
}  // namespace lite
}  // namespace paddle

97 98 99
REGISTER_SUBGRAPH_BRIDGE(XPU,
                         batch_norm,
                         paddle::lite::subgraph::xpu::BatchNormConverter);