batch_norm_op.cc 2.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
22 23
namespace xpu {

24 25 26 27
int BatchNormConverter(void* ctx, OpLite* op) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
28 29
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[XPU] Converting " + op_type + "...";
32

33
  // Get input vars and op attributes
34 35 36 37 38 39 40 41 42
  auto x_var_name = op_info->Input("X").front();
  auto scale_var_name = op_info->Input("Scale").front();
  auto* scale = scope->FindMutableTensor(scale_var_name);
  auto bias_var_name = op_info->Input("Bias").front();
  auto* bias = scope->FindMutableTensor(bias_var_name);
  auto mean_var_name = op_info->Input("Mean").front();
  auto* mean = scope->FindMutableTensor(mean_var_name);
  auto variance_var_name = op_info->Input("Variance").front();
  auto* variance = scope->FindMutableTensor(variance_var_name);
43
  auto y_var_name = op_info->Output("Y").front();
44 45
  auto epsilon = op_info->GetAttr<float>("epsilon");

46 47 48 49 50
  // Create scale, bias, mean, variance nodes
  auto scale_const_node = graph->AddNode(scale_var_name, *scale);
  auto bias_const_node = graph->AddNode(bias_var_name, *bias);
  auto mean_const_node = graph->AddNode(mean_var_name, *mean);
  auto variance_const_node = graph->AddNode(variance_var_name, *variance);
51

52 53 54 55 56 57 58 59 60 61 62
  // Create batch_norm node and set params from op
  auto batch_norm_node =
      graph->builder_.CreateBatchNorm(*graph->GetNode(x_var_name),
                                      *scale_const_node,
                                      *bias_const_node,
                                      *mean_const_node,
                                      *variance_const_node,
                                      1,
                                      epsilon);
  graph->AddNode(y_var_name, graph->builder_.GetField(batch_norm_node, 0));
  return SUCCESS;
63 64 65
}

}  // namespace xpu
66
}  // namespace subgraph
67 68 69
}  // namespace lite
}  // namespace paddle

70 71 72
REGISTER_SUBGRAPH_BRIDGE(XPU,
                         batch_norm,
                         paddle::lite::subgraph::xpu::BatchNormConverter);