conv_process.hpp 17.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#ifndef conv_process_hpp
#define conv_process_hpp

Y
Yan Chunwei 已提交
20 21 22 23
#include <string.h>
#include <cmath>
#include <vector>

24 25 26 27 28 29
#include "lite/backends/fpga/KD/float16.hpp"
#include "lite/backends/fpga/KD/llapi/bias_scale.h"
#include "lite/backends/fpga/KD/llapi/filter.h"
#include "lite/backends/fpga/KD/pe_params.hpp"
#include "lite/backends/fpga/KD/tensor.hpp"
#include "lite/backends/fpga/KD/tensor_util.hpp"
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace zynqmp {

inline int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

inline int get_filter_num_per_div(Tensor* filter, int group_num) {
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

inline int get_split_num(Tensor* filter) {
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
51 52 53
  int filter_num_alignment = filter::get_filter_num_alignment();
  int aligned_num = align_to_x(num, filter_num_alignment);
  return filter::calc_split_num(aligned_num, div_capacity);
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
}

inline void fill_scale_bias_const(ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = 1.0f;
    new_bias_ptr[i] = 0.0f;
  }
  param_->scale()->flush();
  param_->bias()->flush();
}

inline void combine_bn_params(BatchnormParam* bn, ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  float* bn_scale_ptr = bn->scale->data<float>();
  float* bn_bias_ptr = bn->bias->data<float>();
  float* bn_var_ptr = bn->variance->data<float>();
  float* bn_mean_ptr = bn->mean->data<float>();
  float epsilon = bn->epsilon;
  for (int i = 0; i < channel; i++) {
    float new_scale = bn_scale_ptr[i] /
                      static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_scale_ptr[i] = new_scale;
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
  }
}

C
chonwhite 已提交
87 88
inline void combine_add_bn_params(BatchnormParam* bn,
                                  Tensor* bias,
Y
Yan Chunwei 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
                                  ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  if (bn != nullptr) {
    float* bn_scale_ptr = bn->scale->data<float>();
    float* bn_bias_ptr = bn->bias->data<float>();
    float* bn_var_ptr = bn->variance->data<float>();
    float* bn_mean_ptr = bn->mean->data<float>();
    float epsilon = bn->epsilon;
    float* bias_data = bias->data<float>();
    for (int i = 0; i < channel; i++) {
      float new_scale = bn_scale_ptr[i] /
                        static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
      new_scale_ptr[i] = new_scale;
      new_bias_ptr[i] =
          bn_bias_ptr[i] + (bias_data[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
    }
  } else {
    for (int i = 0; i < channel; i++) {
      new_scale_ptr[i] = 1.0f;
      new_bias_ptr[i] = 0.0f;
    }
  }
  param_->scale()->flush();
  param_->bias()->flush();
  param_->scale()->setDataLocation(CPU);
  param_->bias()->setDataLocation(CPU);
}

C
chonwhite 已提交
120 121 122 123 124
inline void format_scale_bias(Tensor* scale,
                              Tensor* bias,
                              Tensor* filter,
                              Tensor* scale_bias,
                              int group) {
Y
Yan Chunwei 已提交
125
  float* scale_data = nullptr;
C
chonwhite 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
  float* bias_data = nullptr;
  if (scale != nullptr) {
    scale_data = scale->data<float>();
  }
  if (bias != nullptr) {
    bias_data = bias->data<float>();
  }
  int channel = filter->shape().num();
  int scale_bias_len = align_to_x(channel / group, BS_NUM_ALIGNMENT) * group;

  int c_per_group = channel / group;
  int aligned_c_per_group = align_to_x(channel / group, BS_NUM_ALIGNMENT);

  Shape bias_scale_shape(N, {2 * scale_bias_len});
  float* bs_data = scale_bias->mutableData<float>(FP32, bias_scale_shape);
  float* temp_data =
      reinterpret_cast<float*>(fpga_malloc(2 * scale_bias_len * sizeof(float)));
  memset(temp_data, 0, 2 * scale_bias_len * sizeof(float));

  std::vector<float> scales;
  if (scale_data != nullptr) {
    for (int i = 0; i < channel; ++i) {
      scales.push_back(scale_data[i]);
149
    }
C
chonwhite 已提交
150 151
    for (int i = 0; i < scale_bias_len - channel; i++) {
      scales.push_back(1);
152
    }
C
chonwhite 已提交
153 154 155
  } else {
    for (int i = 0; i < scale_bias_len; i++) {
      scales.push_back(1);
156
    }
C
chonwhite 已提交
157
  }
158

C
chonwhite 已提交
159 160 161 162
  for (int i = 0; i < scale_bias_len; ++i) {
    temp_data[i + scale_bias_len] = 1;
    temp_data[i] = 0;
  }
163

C
chonwhite 已提交
164 165 166 167 168 169 170 171
  for (int g = 0; g < group; g++) {
    for (int c = 0; c < c_per_group; c++) {
      int src_index = g * c_per_group + c;
      int dst_index = g * aligned_c_per_group + c;
      float scale_value = scales[src_index];
      float bias_value = bias_data == nullptr ? 0 : bias_data[src_index];
      temp_data[dst_index + scale_bias_len] = scale_value;
      temp_data[dst_index] = bias_value;
172
    }
C
chonwhite 已提交
173
  }
174

C
chonwhite 已提交
175 176 177 178 179
  // int element_num_per_div = get_filter_num_per_div(filter, group);
  // int scale_bias_len = align_to_x(channel / group, 8) * group;
  bias_scale::format_bias_scale_array(
      &temp_data, scale_bias_len / group, scale_bias_len);
  memcpy(bs_data, temp_data, 2 * scale_bias_len * sizeof(float));
Y
Yan Chunwei 已提交
180 181
}

C
chonwhite 已提交
182 183 184 185
inline void format_filter(Tensor* filter,
                          Tensor* quantized_filter,
                          int group,
                          std::vector<float>& scales) {  // NOLINT
Y
Yan Chunwei 已提交
186 187
  float max_value = find_max(*filter);
  Shape& filter_shape = filter->shape();
188 189 190

  int mem_size;
  std::vector<float> max_values;
C
chonwhite 已提交
191 192 193 194 195 196 197 198 199 200 201
  int8_t* quantized_data = filter::format_filter(filter->data<float>(),
                                                 mem_size,
                                                 filter_shape.num(),
                                                 filter_shape.channel(),
                                                 filter_shape.height(),
                                                 filter_shape.width(),
                                                 group,
                                                 max_value,
                                                 max_values);

  float mem_factor = mem_size * 1.0f / filter->shape().numel();
202 203
  quantized_filter->setMemScale(mem_factor);

Y
Yan Chunwei 已提交
204
  quantized_filter->setAligned(true);
205
  int8_t* src = quantized_filter->mutableData<int8_t>(INT8, filter->shape());
Y
Yan Chunwei 已提交
206 207 208
  quantized_filter->scale()[0] = max_value / 127.0f;
  quantized_filter->scale()[1] = 127.0f / max_value;

209
  memcpy(src, quantized_data, mem_size);
Y
Yan Chunwei 已提交
210
  quantized_filter->flush();
211 212 213 214

  for (size_t i = 0; i < max_values.size(); i++) {
    scales.push_back(max_values[i] / max_value);
  }
Y
Yan Chunwei 已提交
215 216
}

C
chonwhite 已提交
217 218
inline void format_dw_filter(Tensor* filter,
                             Tensor* quantized_filter,
Y
Yan Chunwei 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
                             float* scale) {
  int num = filter->shape().num();
  int height = filter->shape().height();
  int width = filter->shape().width();
  auto memory_size = filter->shape().memorySize(sizeof(float));
  auto new_data = (float*)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, filter->data<float>(), memory_size);

  size_t size =
      filter::format_dwconv_filter(&new_data, num, height, width, scale);
  float16* src = quantized_filter->mutableData<float16>(FP16, filter->shape());

  memcpy(src, new_data, size);
  quantized_filter->flush();

  fpga_free(new_data);
}

inline void format_fc_filter(Tensor* filter, Tensor* quantized_filter) {
  float max_value = find_max(*filter);
  Shape& filter_shape = filter->shape();
  quantized_filter->setAligned(true);
  quantized_filter->mutableData<int8_t>(INT8, filter->shape());
  quantized_filter->scale()[0] = max_value / 127.0f;
  quantized_filter->scale()[1] = 127.0f / max_value;

  size_t memory_size = filter->shape().memorySize(sizeof(float));
  auto new_data = (float*)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, filter->data<float>(), memory_size);

  int8_t* src = quantized_filter->mutableData<int8_t>(INT8, filter->shape());
  memcpy(src, new_data, quantized_filter->shape().memorySize(sizeof(int8_t)));
  quantized_filter->flush();
  fpga_free(new_data);
}

inline void split_filter_num(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* out = param.output;
  Tensor* filter = param.filter;
  auto channel = out->shape().channel();
  int split_num = param.groups == 1 ? get_split_num(param.filter) : 1;
  int filter_num_per_div = get_filter_num_per_div(filter, param.groups);

264
  auto chw = filter->shape().channel() * filter->shape().height() *
C
chonwhite 已提交
265
             filter->shape().width();
266 267 268
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
  int filter_num_alignment = filter::get_filter_num_alignment();
C
chonwhite 已提交
269 270 271 272
  int aligned_num =
      align_to_x(num / param.groups, filter_num_alignment) * param.groups;
  // int aligned_num = align_to_x(num / param.groups ,FILTER_NUM_ALIGNMENT) *
  // param.groups;
273 274
  split_num = filter::calc_split_num(aligned_num, div_capacity);

Y
Yan Chunwei 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287
  Shape& out_shape = out->shape();
  for (int i = 0; i < split_num; i++) {
    BasicConvParam* conv_param = new BasicConvParam();
    conv_param->output.setDataLocation(Device);
    conv_param->output.setAligned(true);

    int filter_num = filter->shape().num();
    float16* out_address = nullptr;
    float* out_scale_address = nullptr;

    ConvArgs& args = conv_param->args;

    if (split_num == 1) {
C
chonwhite 已提交
288 289
      out_address = out->data<float16>();
      out_scale_address = out->scale();
Y
Yan Chunwei 已提交
290 291
    }
    filter_num = i == split_num - 1
C
chonwhite 已提交
292 293
                     ? channel - (split_num - 1) * filter_num_per_div  // NOLINT
                     : filter_num_per_div;
Y
Yan Chunwei 已提交
294 295

    if (split_num != 1) {
C
chonwhite 已提交
296 297 298
      Shape shape(NHWC, {1, out_shape.height(), out_shape.width(), filter_num});
      out_address = conv_param->output.mutableData<float16>(FP16, shape);
      out_scale_address = conv_param->output.scale();
Y
Yan Chunwei 已提交
299
    }
C
chonwhite 已提交
300 301 302 303 304
    Shape f_shape(NCHW,
                  {filter_num,
                   filter->shape().channel(),
                   filter->shape().height(),
                   filter->shape().width()});
Y
Yan Chunwei 已提交
305 306 307 308 309 310 311 312 313 314 315

    Tensor new_filter;
    float* new_filter_data = new_filter.mutableData<float>(FP32, f_shape);
    int filter_hwc = filter->shape().height() * filter->shape().width() *
                     filter->shape().channel();

    memcpy(new_filter_data,
           filter->data<float>() + i * filter_num_per_div * filter_hwc,
           filter_num * filter_hwc * sizeof(float));
    new_filter.flush();
    conv_param->filter.mutableData<float>(FP32, f_shape);
316 317

    if (param.groups != 1) {
C
chonwhite 已提交
318 319
      int mem_factor =
          32 / filter_num_per_div;  // TODO(chonwhite): change 32 to param;
320 321 322
      conv_param->filter.setMemScale(mem_factor);
    }

C
chonwhite 已提交
323
    std::vector<float> v;  // TODO(chonwhite): change local variable name
324 325
    format_filter(&new_filter, &(conv_param->filter), param.groups, v);
    conv_param->filter.setDataType(INT8);
Y
Yan Chunwei 已提交
326 327 328 329 330 331 332 333 334 335 336

    int sb_num = 2 * align_to_x(filter_num, BS_NUM_ALIGNMENT);
    Tensor scale;
    Tensor bias;

    int chnnnel_start = i * filter_num_per_div;

    Shape s_shape(N, {filter_num});
    float* scale_data = scale.mutableData<float>(FP32, s_shape);
    float* bias_data = bias.mutableData<float>(FP32, s_shape);
    for (int n = 0; n < filter_num; n++) {
C
chonwhite 已提交
337
      scale_data[n] = param.scale()->data<float>()[n + chnnnel_start] * v[n];
Y
Yan Chunwei 已提交
338 339
    }
    for (int n = 0; n < filter_num; n++) {
C
chonwhite 已提交
340
      bias_data[n] = param.bias()->data<float>()[n + chnnnel_start];
Y
Yan Chunwei 已提交
341 342
    }
    Shape sb_shape(N, {sb_num});
C
chonwhite 已提交
343 344 345 346 347
    format_scale_bias(&scale,
                      &bias,
                      &conv_param->filter,
                      &conv_param->scaleBias,
                      param.groups);
C
chonwhite 已提交
348

Y
Yan Chunwei 已提交
349
    conv_param->scaleBias.flush();
350 351
    float* bs_data = conv_param->scaleBias.data<float>();

Y
Yan Chunwei 已提交
352 353 354
    args.group_num = param.groups;
    args.relu_enabled = param.relu.enabled;
    args.sb_address = conv_param->scaleBias.data<float>();
355
    args.sb_address = bs_data;
Y
Yan Chunwei 已提交
356 357 358 359 360 361 362 363 364 365 366 367 368
    args.kernel.stride_h = param.strides[1];
    args.kernel.stride_w = param.strides[0];
    args.kernel.height = new_filter.shape().height();
    args.kernel.width = new_filter.shape().width();

    args.filter_address = conv_param->filter.data<int8_t>();
    args.filter_num = filter_num;
    args.filter_scale_address = conv_param->filter.scale();
    args.image.address = input->data<void>();
    args.image.scale_address = input->scale();
    args.image.channels = input->shape().channel();
    args.image.width = input->shape().width();
    args.image.height = input->shape().height();
369
    args.image.pad_width = param.paddings[1];
Y
Yan Chunwei 已提交
370
    args.image.pad_height = param.paddings[0];
C
chonwhite 已提交
371
    // dilations[0] = dilations[1] ;
372 373
    args.dilation = param.dilations[0];

Y
Yan Chunwei 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387
    args.output.address = out_address;
    args.output.scale_address = out_scale_address;
    param.splitParams().push_back(conv_param);
  }
}

inline void split_channel(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* output = param.output;
  input->syncToCPU();

  int num = ceil(input->shape().channel() * 1.0f / 2047);
  int channel = input->shape().channel() / num;
388

Y
Yan Chunwei 已提交
389 390 391 392 393 394 395 396 397 398 399 400 401
  Shape bs_shape(N, {channel});

  for (int i = 0; i < num; i++) {
    BasicConvParam* conv_param = new BasicConvParam();

    // input && output;
    Shape in_shape(
        NCHW, {1, channel, input->shape().height(), input->shape().width()});
    conv_param->input.shareDataWith(input, in_shape, channel * i);
    conv_param->output.mutableData<float16>(FP16, output->shape());

    // filter transformation;
    Shape f_shape(NCHW, {param.filter->shape().num(), channel, 1, 1});
402

Y
Yan Chunwei 已提交
403 404 405 406 407 408 409 410 411 412
    Tensor new_filter;

    float* dst = new_filter.mutableData<float>(FP32, f_shape);
    float* src = param.filter->data<float>() + i * channel;
    for (int n = 0; n < f_shape.num(); n++) {
      memcpy(dst, src, channel * sizeof(float));
      dst += channel;
      src += param.filter->shape().channel();
    }
    new_filter.flush();
413 414
    std::vector<float> scales;
    format_filter(&new_filter, &(conv_param->filter), param.groups, scales);
Y
Yan Chunwei 已提交
415 416 417 418 419 420 421 422 423 424 425 426

    Tensor bias;
    Tensor scale;

    float* bias_data = bias.mutableData<float>(FP32, bs_shape);
    float* scale_data = scale.mutableData<float>(FP32, bs_shape);
    for (int c = 0; c < channel; c++) {
      scale_data[c] = 1;
      bias_data[c] = param.bias()->data<float>()[c] / num;
    }
    scale.flush();
    bias.flush();
427
    // Shape sb_shape(N, {2 * channel});
C
chonwhite 已提交
428 429 430 431 432
    format_scale_bias(&scale,
                      &bias,
                      &conv_param->filter,
                      &conv_param->scaleBias,
                      param.groups);
Y
Yan Chunwei 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    conv_param->scaleBias.flush();

    ConvArgs& args = conv_param->args;
    args.group_num = param.groups;
    args.relu_enabled = param.relu.enabled;
    args.sb_address = conv_param->scaleBias.data<float>();
    args.kernel.stride_h = param.strides[1];
    args.kernel.stride_w = param.strides[0];
    args.kernel.height = new_filter.shape().height();
    args.kernel.width = new_filter.shape().width();

    args.filter_address = conv_param->filter.data<int8_t>();
    args.filter_num = f_shape.num();
    args.filter_scale_address = conv_param->filter.scale();
    args.image.address = conv_param->input.mutableData<void>();
    args.image.scale_address = conv_param->input.scale();

    args.image.channels = conv_param->input.shape().channel();
    args.image.width = conv_param->input.shape().width();
    args.image.height = conv_param->input.shape().height();
453 454
    args.image.pad_width = param.paddings[1];
    args.image.pad_height = param.paddings[0];
C
chonwhite 已提交
455
    // dilations[0] = dilations[1]
456
    args.dilation = param.dilations[0];
Y
Yan Chunwei 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    args.output.address = conv_param->output.mutableData<void>();
    args.output.scale_address = conv_param->output.scale();
    param.splitParams().push_back(conv_param);
  }
}

inline int fill_split_arg(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* output = param.output;
  if (output->shape().dimSize() == 4 && input->shape().channel() > 2047 &&
      input->shape().width() == 1) {
    split_channel(c_param);
    return 1;
  } else {
    split_filter_num(c_param);
    return 0;
  }
}

inline bool compute_conv(const ConvParam& c_conv_params) {
  ConvParam& conv_params = const_cast<ConvParam&>(c_conv_params);
  std::vector<BasicConvParam*>& params = conv_params.splitParams();
  int ret = 0;
  for (auto conv_param : params) {
    ret |= compute_fpga_conv_basic(conv_param->args);
  }
  size_t size = params.size();
  if (ret == 0 && size > 1) {
486
    // Tensor* output = conv_params.output;
Y
Yan Chunwei 已提交
487 488 489 490 491 492 493 494 495 496 497 498
    Tensor& img = params[0]->output;
    for (int i = 0; i < 1; i++) {
      for (int i = 0; i < img.shape().numel(); i++) {
        float value = half_to_float(img.data<float16>()[i]);
      }
    }
  }
  return ret == 0;
}

}  // namespace zynqmp
}  // namespace paddle
499 500

#endif /* conv_process_hpp */