conv_process.hpp 18.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#ifndef conv_process_hpp
#define conv_process_hpp

Y
Yan Chunwei 已提交
20 21 22 23
#include <string.h>
#include <cmath>
#include <vector>

24 25 26 27 28 29
#include "lite/backends/fpga/KD/float16.hpp"
#include "lite/backends/fpga/KD/llapi/bias_scale.h"
#include "lite/backends/fpga/KD/llapi/filter.h"
#include "lite/backends/fpga/KD/pe_params.hpp"
#include "lite/backends/fpga/KD/tensor.hpp"
#include "lite/backends/fpga/KD/tensor_util.hpp"
Y
Yan Chunwei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

namespace paddle {
namespace zynqmp {

inline int get_aligned_filter_element_num(int chw) {
  return align_to_x(chw, FILTER_ELEMENT_ALIGNMENT);
}

inline int get_filter_num_per_div(Tensor* filter, int group_num) {
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
  return filter::calc_num_per_div(num, group_num, div_capacity);
}

inline int get_split_num(Tensor* filter) {
  auto chw = filter->shape().channel() * filter->shape().height() *
             filter->shape().width();
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
51 52 53 54
  // int aligned_num = align_to_x(num ,FILTER_NUM_ALIGNMENT);
  int filter_num_alignment = filter::get_filter_num_alignment();
  int aligned_num = align_to_x(num, filter_num_alignment);
  return filter::calc_split_num(aligned_num, div_capacity);
Y
Yan Chunwei 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
}

inline void fill_scale_bias_const(ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = 1.0f;
    new_bias_ptr[i] = 0.0f;
  }
  param_->scale()->flush();
  param_->bias()->flush();
}

inline void combine_bn_params(BatchnormParam* bn, ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  float* bn_scale_ptr = bn->scale->data<float>();
  float* bn_bias_ptr = bn->bias->data<float>();
  float* bn_var_ptr = bn->variance->data<float>();
  float* bn_mean_ptr = bn->mean->data<float>();
  float epsilon = bn->epsilon;
  for (int i = 0; i < channel; i++) {
    float new_scale = bn_scale_ptr[i] /
                      static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
    new_scale_ptr[i] = new_scale;
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
  }
}

C
chonwhite 已提交
88 89
inline void combine_add_bn_params(BatchnormParam* bn,
                                  Tensor* bias,
Y
Yan Chunwei 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                                  ConvParam* param_) {
  int channel = param_->output->shape().channel();
  Shape sb_shape(N, {channel});
  float* new_scale_ptr = param_->scale()->mutableData<float>(FP32, sb_shape);
  float* new_bias_ptr = param_->bias()->mutableData<float>(FP32, sb_shape);
  if (bn != nullptr) {
    float* bn_scale_ptr = bn->scale->data<float>();
    float* bn_bias_ptr = bn->bias->data<float>();
    float* bn_var_ptr = bn->variance->data<float>();
    float* bn_mean_ptr = bn->mean->data<float>();
    float epsilon = bn->epsilon;
    float* bias_data = bias->data<float>();
    for (int i = 0; i < channel; i++) {
      float new_scale = bn_scale_ptr[i] /
                        static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
      new_scale_ptr[i] = new_scale;
      new_bias_ptr[i] =
          bn_bias_ptr[i] + (bias_data[i] - bn_mean_ptr[i]) * new_scale_ptr[i];
    }
  } else {
    for (int i = 0; i < channel; i++) {
      new_scale_ptr[i] = 1.0f;
      new_bias_ptr[i] = 0.0f;
    }
  }
  param_->scale()->flush();
  param_->bias()->flush();
  param_->scale()->setDataLocation(CPU);
  param_->bias()->setDataLocation(CPU);
}

C
chonwhite 已提交
121 122 123 124 125
inline void format_scale_bias(Tensor* scale,
                              Tensor* bias,
                              Tensor* filter,
                              Tensor* scale_bias,
                              int group) {
Y
Yan Chunwei 已提交
126
  float* scale_data = nullptr;
C
chonwhite 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
  float* bias_data = nullptr;
  if (scale != nullptr) {
    scale_data = scale->data<float>();
  }
  if (bias != nullptr) {
    bias_data = bias->data<float>();
  }
  int channel = filter->shape().num();
  int scale_bias_len = align_to_x(channel / group, BS_NUM_ALIGNMENT) * group;

  int c_per_group = channel / group;
  int aligned_c_per_group = align_to_x(channel / group, BS_NUM_ALIGNMENT);

  Shape bias_scale_shape(N, {2 * scale_bias_len});
  float* bs_data = scale_bias->mutableData<float>(FP32, bias_scale_shape);
  float* temp_data =
      reinterpret_cast<float*>(fpga_malloc(2 * scale_bias_len * sizeof(float)));
  memset(temp_data, 0, 2 * scale_bias_len * sizeof(float));

  std::vector<float> scales;
  if (scale_data != nullptr) {
    for (int i = 0; i < channel; ++i) {
      scales.push_back(scale_data[i]);
150
    }
C
chonwhite 已提交
151 152
    for (int i = 0; i < scale_bias_len - channel; i++) {
      scales.push_back(1);
153
    }
C
chonwhite 已提交
154 155 156
  } else {
    for (int i = 0; i < scale_bias_len; i++) {
      scales.push_back(1);
157
    }
C
chonwhite 已提交
158
  }
159

C
chonwhite 已提交
160 161 162 163
  for (int i = 0; i < scale_bias_len; ++i) {
    temp_data[i + scale_bias_len] = 1;
    temp_data[i] = 0;
  }
164

C
chonwhite 已提交
165 166 167 168 169 170 171 172
  for (int g = 0; g < group; g++) {
    for (int c = 0; c < c_per_group; c++) {
      int src_index = g * c_per_group + c;
      int dst_index = g * aligned_c_per_group + c;
      float scale_value = scales[src_index];
      float bias_value = bias_data == nullptr ? 0 : bias_data[src_index];
      temp_data[dst_index + scale_bias_len] = scale_value;
      temp_data[dst_index] = bias_value;
173
    }
C
chonwhite 已提交
174
  }
175

C
chonwhite 已提交
176 177 178 179 180
  // int element_num_per_div = get_filter_num_per_div(filter, group);
  // int scale_bias_len = align_to_x(channel / group, 8) * group;
  bias_scale::format_bias_scale_array(
      &temp_data, scale_bias_len / group, scale_bias_len);
  memcpy(bs_data, temp_data, 2 * scale_bias_len * sizeof(float));
Y
Yan Chunwei 已提交
181 182
}

C
chonwhite 已提交
183 184 185 186
inline void format_filter(Tensor* filter,
                          Tensor* quantized_filter,
                          int group,
                          std::vector<float>& scales) {  // NOLINT
Y
Yan Chunwei 已提交
187 188
  float max_value = find_max(*filter);
  Shape& filter_shape = filter->shape();
189 190 191

  int mem_size;
  std::vector<float> max_values;
C
chonwhite 已提交
192 193 194 195 196 197 198 199 200 201 202
  int8_t* quantized_data = filter::format_filter(filter->data<float>(),
                                                 mem_size,
                                                 filter_shape.num(),
                                                 filter_shape.channel(),
                                                 filter_shape.height(),
                                                 filter_shape.width(),
                                                 group,
                                                 max_value,
                                                 max_values);

  float mem_factor = mem_size * 1.0f / filter->shape().numel();
203 204
  quantized_filter->setMemScale(mem_factor);

Y
Yan Chunwei 已提交
205
  quantized_filter->setAligned(true);
206
  int8_t* src = quantized_filter->mutableData<int8_t>(INT8, filter->shape());
Y
Yan Chunwei 已提交
207 208 209
  quantized_filter->scale()[0] = max_value / 127.0f;
  quantized_filter->scale()[1] = 127.0f / max_value;

210
  memcpy(src, quantized_data, mem_size);
Y
Yan Chunwei 已提交
211
  quantized_filter->flush();
212 213 214 215 216 217 218 219 220 221 222 223 224 225

  for (size_t i = 0; i < max_values.size(); i++) {
    scales.push_back(max_values[i] / max_value);
  }

  // filter->saveToFile("filter.txt");
  // std::ofstream ofs;
  // ofs.open("quant.txt");
  // for (int i = 0; i < mem_size; i++) {
  //   float value = quantized_data[i];
  //   ofs << value << std::endl;
  // }
  // ofs.close();
  // exit(-1);
Y
Yan Chunwei 已提交
226 227
}

C
chonwhite 已提交
228 229
inline void format_dw_filter(Tensor* filter,
                             Tensor* quantized_filter,
Y
Yan Chunwei 已提交
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
                             float* scale) {
  int num = filter->shape().num();
  int height = filter->shape().height();
  int width = filter->shape().width();
  auto memory_size = filter->shape().memorySize(sizeof(float));
  auto new_data = (float*)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, filter->data<float>(), memory_size);

  size_t size =
      filter::format_dwconv_filter(&new_data, num, height, width, scale);
  float16* src = quantized_filter->mutableData<float16>(FP16, filter->shape());

  memcpy(src, new_data, size);
  quantized_filter->flush();

  fpga_free(new_data);
}

inline void format_fc_filter(Tensor* filter, Tensor* quantized_filter) {
  float max_value = find_max(*filter);
  Shape& filter_shape = filter->shape();
  quantized_filter->setAligned(true);
  quantized_filter->mutableData<int8_t>(INT8, filter->shape());
  quantized_filter->scale()[0] = max_value / 127.0f;
  quantized_filter->scale()[1] = 127.0f / max_value;

  size_t memory_size = filter->shape().memorySize(sizeof(float));
  auto new_data = (float*)fpga_malloc(memory_size);  // NOLINT
  memcpy(new_data, filter->data<float>(), memory_size);

  int8_t* src = quantized_filter->mutableData<int8_t>(INT8, filter->shape());
  memcpy(src, new_data, quantized_filter->shape().memorySize(sizeof(int8_t)));
  quantized_filter->flush();
  fpga_free(new_data);
}

inline void split_filter_num(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* out = param.output;
  Tensor* filter = param.filter;
  auto channel = out->shape().channel();
  int split_num = param.groups == 1 ? get_split_num(param.filter) : 1;
  int filter_num_per_div = get_filter_num_per_div(filter, param.groups);

275
  auto chw = filter->shape().channel() * filter->shape().height() *
C
chonwhite 已提交
276
             filter->shape().width();
277 278 279
  auto num = filter->shape().num();
  int div_capacity = filter::calc_division_capacity(chw);
  int filter_num_alignment = filter::get_filter_num_alignment();
C
chonwhite 已提交
280 281 282 283
  int aligned_num =
      align_to_x(num / param.groups, filter_num_alignment) * param.groups;
  // int aligned_num = align_to_x(num / param.groups ,FILTER_NUM_ALIGNMENT) *
  // param.groups;
284 285
  split_num = filter::calc_split_num(aligned_num, div_capacity);

Y
Yan Chunwei 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298
  Shape& out_shape = out->shape();
  for (int i = 0; i < split_num; i++) {
    BasicConvParam* conv_param = new BasicConvParam();
    conv_param->output.setDataLocation(Device);
    conv_param->output.setAligned(true);

    int filter_num = filter->shape().num();
    float16* out_address = nullptr;
    float* out_scale_address = nullptr;

    ConvArgs& args = conv_param->args;

    if (split_num == 1) {
C
chonwhite 已提交
299 300
      out_address = out->data<float16>();
      out_scale_address = out->scale();
Y
Yan Chunwei 已提交
301 302
    }
    filter_num = i == split_num - 1
C
chonwhite 已提交
303 304
                     ? channel - (split_num - 1) * filter_num_per_div  // NOLINT
                     : filter_num_per_div;
Y
Yan Chunwei 已提交
305 306

    if (split_num != 1) {
C
chonwhite 已提交
307 308 309
      Shape shape(NHWC, {1, out_shape.height(), out_shape.width(), filter_num});
      out_address = conv_param->output.mutableData<float16>(FP16, shape);
      out_scale_address = conv_param->output.scale();
Y
Yan Chunwei 已提交
310
    }
C
chonwhite 已提交
311 312 313 314 315
    Shape f_shape(NCHW,
                  {filter_num,
                   filter->shape().channel(),
                   filter->shape().height(),
                   filter->shape().width()});
Y
Yan Chunwei 已提交
316 317 318 319 320 321 322 323 324 325 326

    Tensor new_filter;
    float* new_filter_data = new_filter.mutableData<float>(FP32, f_shape);
    int filter_hwc = filter->shape().height() * filter->shape().width() *
                     filter->shape().channel();

    memcpy(new_filter_data,
           filter->data<float>() + i * filter_num_per_div * filter_hwc,
           filter_num * filter_hwc * sizeof(float));
    new_filter.flush();
    conv_param->filter.mutableData<float>(FP32, f_shape);
327 328

    if (param.groups != 1) {
C
chonwhite 已提交
329 330
      int mem_factor =
          32 / filter_num_per_div;  // TODO(chonwhite): change 32 to param;
331 332 333
      conv_param->filter.setMemScale(mem_factor);
    }

C
chonwhite 已提交
334
    std::vector<float> v;  // TODO(chonwhite): change local variable name
335 336
    format_filter(&new_filter, &(conv_param->filter), param.groups, v);
    conv_param->filter.setDataType(INT8);
Y
Yan Chunwei 已提交
337 338 339 340 341 342 343 344 345 346 347

    int sb_num = 2 * align_to_x(filter_num, BS_NUM_ALIGNMENT);
    Tensor scale;
    Tensor bias;

    int chnnnel_start = i * filter_num_per_div;

    Shape s_shape(N, {filter_num});
    float* scale_data = scale.mutableData<float>(FP32, s_shape);
    float* bias_data = bias.mutableData<float>(FP32, s_shape);
    for (int n = 0; n < filter_num; n++) {
C
chonwhite 已提交
348
      scale_data[n] = param.scale()->data<float>()[n + chnnnel_start] * v[n];
Y
Yan Chunwei 已提交
349 350
    }
    for (int n = 0; n < filter_num; n++) {
C
chonwhite 已提交
351
      bias_data[n] = param.bias()->data<float>()[n + chnnnel_start];
Y
Yan Chunwei 已提交
352 353
    }
    Shape sb_shape(N, {sb_num});
C
chonwhite 已提交
354 355 356 357 358
    format_scale_bias(&scale,
                      &bias,
                      &conv_param->filter,
                      &conv_param->scaleBias,
                      param.groups);
359
    // conv_param->scaleBias.saveToFile("sb.txt");
Y
Yan Chunwei 已提交
360
    conv_param->scaleBias.flush();
361 362 363 364 365
    float* bs_data = conv_param->scaleBias.data<float>();
    // conv_param->scaleBias.saveToFile("sb.txt");
    // param.scale()->saveToFile("scale.txt");
    // param.bias()->saveToFile("bias.txt");

Y
Yan Chunwei 已提交
366 367 368
    args.group_num = param.groups;
    args.relu_enabled = param.relu.enabled;
    args.sb_address = conv_param->scaleBias.data<float>();
369
    args.sb_address = bs_data;
Y
Yan Chunwei 已提交
370 371 372 373 374 375 376 377 378 379 380 381 382
    args.kernel.stride_h = param.strides[1];
    args.kernel.stride_w = param.strides[0];
    args.kernel.height = new_filter.shape().height();
    args.kernel.width = new_filter.shape().width();

    args.filter_address = conv_param->filter.data<int8_t>();
    args.filter_num = filter_num;
    args.filter_scale_address = conv_param->filter.scale();
    args.image.address = input->data<void>();
    args.image.scale_address = input->scale();
    args.image.channels = input->shape().channel();
    args.image.width = input->shape().width();
    args.image.height = input->shape().height();
383
    args.image.pad_width = param.paddings[1];
Y
Yan Chunwei 已提交
384
    args.image.pad_height = param.paddings[0];
C
chonwhite 已提交
385
    // dilations[0] = dilations[1] ;
386 387
    args.dilation = param.dilations[0];

Y
Yan Chunwei 已提交
388 389 390 391 392 393 394 395 396 397 398 399 400 401
    args.output.address = out_address;
    args.output.scale_address = out_scale_address;
    param.splitParams().push_back(conv_param);
  }
}

inline void split_channel(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* output = param.output;
  input->syncToCPU();

  int num = ceil(input->shape().channel() * 1.0f / 2047);
  int channel = input->shape().channel() / num;
402

Y
Yan Chunwei 已提交
403 404 405 406 407 408 409 410 411 412 413 414 415
  Shape bs_shape(N, {channel});

  for (int i = 0; i < num; i++) {
    BasicConvParam* conv_param = new BasicConvParam();

    // input && output;
    Shape in_shape(
        NCHW, {1, channel, input->shape().height(), input->shape().width()});
    conv_param->input.shareDataWith(input, in_shape, channel * i);
    conv_param->output.mutableData<float16>(FP16, output->shape());

    // filter transformation;
    Shape f_shape(NCHW, {param.filter->shape().num(), channel, 1, 1});
416

Y
Yan Chunwei 已提交
417 418 419 420 421 422 423 424 425 426
    Tensor new_filter;

    float* dst = new_filter.mutableData<float>(FP32, f_shape);
    float* src = param.filter->data<float>() + i * channel;
    for (int n = 0; n < f_shape.num(); n++) {
      memcpy(dst, src, channel * sizeof(float));
      dst += channel;
      src += param.filter->shape().channel();
    }
    new_filter.flush();
427 428
    std::vector<float> scales;
    format_filter(&new_filter, &(conv_param->filter), param.groups, scales);
Y
Yan Chunwei 已提交
429 430 431 432 433 434 435 436 437 438 439 440

    Tensor bias;
    Tensor scale;

    float* bias_data = bias.mutableData<float>(FP32, bs_shape);
    float* scale_data = scale.mutableData<float>(FP32, bs_shape);
    for (int c = 0; c < channel; c++) {
      scale_data[c] = 1;
      bias_data[c] = param.bias()->data<float>()[c] / num;
    }
    scale.flush();
    bias.flush();
441
    // Shape sb_shape(N, {2 * channel});
C
chonwhite 已提交
442 443 444 445 446
    format_scale_bias(&scale,
                      &bias,
                      &conv_param->filter,
                      &conv_param->scaleBias,
                      param.groups);
Y
Yan Chunwei 已提交
447
    conv_param->scaleBias.flush();
448
    // conv_param->scaleBias.saveToFile("sb.txt");
Y
Yan Chunwei 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

    ConvArgs& args = conv_param->args;
    args.group_num = param.groups;
    args.relu_enabled = param.relu.enabled;
    args.sb_address = conv_param->scaleBias.data<float>();
    args.kernel.stride_h = param.strides[1];
    args.kernel.stride_w = param.strides[0];
    args.kernel.height = new_filter.shape().height();
    args.kernel.width = new_filter.shape().width();

    args.filter_address = conv_param->filter.data<int8_t>();
    args.filter_num = f_shape.num();
    args.filter_scale_address = conv_param->filter.scale();
    args.image.address = conv_param->input.mutableData<void>();
    args.image.scale_address = conv_param->input.scale();

    args.image.channels = conv_param->input.shape().channel();
    args.image.width = conv_param->input.shape().width();
    args.image.height = conv_param->input.shape().height();
468 469
    args.image.pad_width = param.paddings[1];
    args.image.pad_height = param.paddings[0];
C
chonwhite 已提交
470
    // dilations[0] = dilations[1]
471
    args.dilation = param.dilations[0];
Y
Yan Chunwei 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
    args.output.address = conv_param->output.mutableData<void>();
    args.output.scale_address = conv_param->output.scale();
    param.splitParams().push_back(conv_param);
  }
}

inline int fill_split_arg(const ConvParam& c_param) {
  ConvParam& param = const_cast<ConvParam&>(c_param);
  Tensor* input = param.input;
  Tensor* output = param.output;
  if (output->shape().dimSize() == 4 && input->shape().channel() > 2047 &&
      input->shape().width() == 1) {
    split_channel(c_param);
    return 1;
  } else {
    split_filter_num(c_param);
    return 0;
  }
}

inline bool compute_conv(const ConvParam& c_conv_params) {
  ConvParam& conv_params = const_cast<ConvParam&>(c_conv_params);
  std::vector<BasicConvParam*>& params = conv_params.splitParams();
  int ret = 0;
  for (auto conv_param : params) {
    ret |= compute_fpga_conv_basic(conv_param->args);
  }
  size_t size = params.size();
  if (ret == 0 && size > 1) {
501
    // Tensor* output = conv_params.output;
Y
Yan Chunwei 已提交
502 503 504 505 506 507 508 509 510 511 512 513
    Tensor& img = params[0]->output;
    for (int i = 0; i < 1; i++) {
      for (int i = 0; i < img.shape().numel(); i++) {
        float value = half_to_float(img.data<float16>()[i]);
      }
    }
  }
  return ret == 0;
}

}  // namespace zynqmp
}  // namespace paddle
514 515

#endif /* conv_process_hpp */