framework.h 8.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <gtest/gtest.h>
#include <time.h>
#include <algorithm>
#include <chrono>  // NOLINT
20
#include <cmath>
Y
Yan Chunwei 已提交
21 22 23
#include <iomanip>
#include <memory>
#include <string>
J
juncaipeng 已提交
24
#include <unordered_map>
Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/program.h"
#include "lite/core/scope.h"
#include "lite/core/types.h"
#include "lite/model_parser/cpp/op_desc.h"

namespace paddle {
namespace lite {
namespace arena {

/*
 * Init data and prepare the op.
 */
class TestCase {
 public:
  explicit TestCase(const Place& place, const std::string& alias)
      : place_(place), scope_(new Scope), alias_(alias) {
    ctx_ = ContextScheduler::Global().NewContext(place_.target);
  }
46
  virtual ~TestCase();
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

  void Prepare() {
    PrepareScopes();
    PrepareData();
    op_desc_.reset(new cpp::OpDesc);
    PrepareOpDesc(op_desc_.get());

    PrepareOutputsForInstruction();
    CreateInstruction();
    PrepareInputsForInstruction();
  }

  /// Run the target instruction, that is run the test operator.
  void RunInstruction() { instruction_->Run(); }

  KernelContext* context() { return ctx_.get(); }

  /// The baseline should be implemented, which acts similar to an operator,
  /// that is take several tensors as input and output several tensors as
  /// output.
  virtual void RunBaseline(Scope* scope) = 0;

  /// Check the precision of the output tensors. It will compare the same tensor
  /// in two scopes, one of the instruction execution, and the other for the
  /// baseline.
  template <typename T>
  bool CheckPrecision(const std::string& var_name, float abs_error);

  const cpp::OpDesc& op_desc() { return *op_desc_; }

  // Check whether the output tensor is consistent with the output definition in
  // kernel registry.
  void CheckKernelConsistWithDefinition() {}

J
juncaipeng 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94
  // Get the real precision of the output for check precision. When the declare
  // precision obtained from the kernel is any, we should set the precision of
  // the output in test case.
  bool GetPrecisonType(const std::string& var_name,
                       PrecisionType* precision_type) {
    auto res = precision_type_map_.find(var_name);
    if (res == precision_type_map_.end()) {
      return false;
    } else {
      *precision_type = precision_type_map_.at(var_name);
      return true;
    }
  }

Y
Yan Chunwei 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
  Scope& scope() { return *scope_; }

  Scope* baseline_scope() { return base_scope_; }
  Scope* inst_scope() { return inst_scope_; }

 protected:
  // Prepare inputs in scope() for Tester.
  virtual void PrepareData() = 0;

  /// Prepare a tensor in host. The tensors will be created in scope_.
  /// Need to specify the targets other than X86 or ARM.
  template <typename T>
  void SetCommonTensor(const std::string& var_name,
                       const DDim& ddim,
                       const T* data,
                       const LoD& lod = {}) {
    auto* tensor = scope_->NewTensor(var_name);
    tensor->Resize(ddim);
    auto* d = tensor->mutable_data<T>();
    memcpy(d, data, ddim.production() * sizeof(T));

    // set lod
    if (!lod.empty()) *tensor->mutable_lod() = lod;
  }

  // Prepare for the operator.
  virtual void PrepareOpDesc(cpp::OpDesc* op_desc) = 0;

J
juncaipeng 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135
  // Set the real precision of the output for check precision. When the declare
  // precision obtained from the kernel is any, we should set the precision of
  // the output in test case.
  void SetPrecisionType(const std::string& var_name,
                        const PrecisionType& precision_type) {
    auto res = precision_type_map_.find(var_name);
    if (res == precision_type_map_.end()) {
      precision_type_map_.insert({var_name, precision_type});
    } else {
      precision_type_map_.at(var_name) = precision_type;
    }
  }

Y
Yan Chunwei 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
 public:
  const Instruction& instruction() { return *instruction_; }

 private:
  std::unique_ptr<KernelContext> ctx_;
  void CreateInstruction();

  void PrepareScopes() {
    inst_scope_ = &scope_->NewScope();
    base_scope_ = &scope_->NewScope();
  }

  // Check shape
  // TODO(Superjomn) Move this method to utils or DDim?
  bool ShapeEquals(const DDim& a, const DDim& b) {
    if (a.size() != b.size()) return false;
    for (int i = 0; i < a.size(); i++) {
      if (a[i] != b[i]) return false;
    }
    return true;
  }

  /// Copy the input tensors to target devices needed by the instruction.
  void PrepareInputsForInstruction();

  // Create output tensors and variables.
  void PrepareOutputsForInstruction() {
    for (auto x : op_desc().output_vars()) {
      inst_scope_->NewTensor(x);
      base_scope_->NewTensor(x);
    }
  }

 private:
170
  Place place_;
Y
Yan Chunwei 已提交
171
  std::shared_ptr<Scope> scope_;
172
  std::string alias_;
Y
Yan Chunwei 已提交
173 174 175 176 177 178
  // The workspace for the Instruction.
  Scope* inst_scope_{};
  // The workspace for the baseline implementation.
  Scope* base_scope_{};
  std::unique_ptr<cpp::OpDesc> op_desc_;
  std::unique_ptr<Instruction> instruction_;
J
juncaipeng 已提交
179
  std::unordered_map<std::string, PrecisionType> precision_type_map_;
Y
Yan Chunwei 已提交
180 181 182 183 184 185 186 187 188 189 190
};

class Arena {
 public:
  Arena(std::unique_ptr<TestCase>&& tester,
        const Place& place,
        float abs_error = 1e-5)
      : tester_(std::move(tester)), place_(place), abs_error_(abs_error) {
    tester_->Prepare();
  }

191
  bool TestPrecision(const std::vector<std::string>& exclude_outs = {}) {
Y
Yan Chunwei 已提交
192 193 194 195 196 197
    tester_->RunBaseline(tester_->baseline_scope());
    tester_->RunInstruction();

    bool success = true;
    for (auto& out : tester_->op_desc().OutputArgumentNames()) {
      for (auto& var : tester_->op_desc().Output(out)) {
198 199 200 201
        if (std::find(exclude_outs.begin(), exclude_outs.end(), var) !=
            exclude_outs.end()) {
          continue;
        }
Y
Yan Chunwei 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        success = success && CompareTensor(out, var);
      }
    }
    LOG(INFO) << "done";
    return success;
  }

  void TestPerformance(int times = 100) {
    auto timer = std::chrono::high_resolution_clock::now();
    for (int i = 0; i < times; i++) {
      tester_->RunInstruction();
    }
    auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(
        std::chrono::high_resolution_clock::now() - timer);
    LOG(INFO) << "average duration: " << duration.count() << " ms";
  }

 private:
  // input_name: X
  bool CompareTensor(const std::string& arg_name, const std::string& var_name) {
    // get tensor type.
    const Type* type =
        tester_->instruction().kernel()->GetOutputDeclType(arg_name);
J
juncaipeng 已提交
225 226 227 228 229
    auto precision_type = type->precision();
    if (precision_type == PRECISION(kAny)) {
      CHECK(tester_->GetPrecisonType(var_name, &precision_type));
    }
    switch (precision_type) {
Y
Yan Chunwei 已提交
230 231 232 233 234 235 236 237 238 239
      case PRECISION(kFloat):
        return tester_->CheckPrecision<float>(var_name, abs_error_);
      case PRECISION(kInt8):
        return tester_->CheckPrecision<int8_t>(var_name, abs_error_);
      case PRECISION(kInt32):
        return tester_->CheckPrecision<int32_t>(var_name, abs_error_);
      case PRECISION(kBool):
        return tester_->CheckPrecision<bool>(var_name, abs_error_);
      default:
        LOG(FATAL) << "not support type " << PrecisionToStr(type->precision());
240
        return false;
Y
Yan Chunwei 已提交
241 242 243 244 245 246
    }
  }

 private:
  std::unique_ptr<TestCase> tester_;
  Place place_;
247
  float abs_error_;
Y
Yan Chunwei 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
};

template <typename T>
bool TestCase::CheckPrecision(const std::string& var_name, float abs_error) {
  auto a_tensor = inst_scope_->FindTensor(var_name);
  auto b_tensor = base_scope_->FindTensor(var_name);
  CHECK(a_tensor);
  CHECK(b_tensor);

  CHECK(ShapeEquals(a_tensor->dims(), b_tensor->dims()));

  CHECK(a_tensor->lod() == b_tensor->lod()) << "lod not match";

  // The baseline should output in host devices.
  CHECK(b_tensor->target() == TARGET(kHost) ||
        b_tensor->target() == TARGET(kX86) ||
        b_tensor->target() == TARGET(kARM));

  const T* a_data{};
  switch (a_tensor->target()) {
    case TARGET(kX86):
    case TARGET(kHost):
    case TARGET(kARM):
      a_data = static_cast<const T*>(a_tensor->raw_data());
      break;

    default:
      // Before compare, need to copy data from `target` device to host.
      LOG(FATAL) << "Not supported";
  }

  CHECK(a_data);

  const T* b_data = static_cast<const T*>(b_tensor->raw_data());

  bool success = true;
  for (int i = 0; i < a_tensor->dims().production(); i++) {
    EXPECT_NEAR(a_data[i], b_data[i], abs_error);
    if (fabsf(a_data[i] - b_data[i]) > abs_error) {
      success = false;
    }
  }
  return success;
}

}  // namespace arena
}  // namespace lite
}  // namespace paddle