framework.h 7.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
#include <gtest/gtest.h>
#include <time.h>
#include <algorithm>
#include <chrono>  // NOLINT
20
#include <cmath>
Y
Yan Chunwei 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#include <iomanip>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "lite/core/op_registry.h"
#include "lite/core/program.h"
#include "lite/core/scope.h"
#include "lite/core/types.h"
#include "lite/model_parser/cpp/op_desc.h"

namespace paddle {
namespace lite {
namespace arena {

/*
 * Init data and prepare the op.
 */
class TestCase {
 public:
  explicit TestCase(const Place& place, const std::string& alias)
      : place_(place), scope_(new Scope), alias_(alias) {
    ctx_ = ContextScheduler::Global().NewContext(place_.target);
  }
45
  virtual ~TestCase() {}
Y
Yan Chunwei 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

  void Prepare() {
    PrepareScopes();
    PrepareData();
    op_desc_.reset(new cpp::OpDesc);
    PrepareOpDesc(op_desc_.get());

    PrepareOutputsForInstruction();
    CreateInstruction();
    PrepareInputsForInstruction();
  }

  /// Run the target instruction, that is run the test operator.
  void RunInstruction() { instruction_->Run(); }

  KernelContext* context() { return ctx_.get(); }

  /// The baseline should be implemented, which acts similar to an operator,
  /// that is take several tensors as input and output several tensors as
  /// output.
  virtual void RunBaseline(Scope* scope) = 0;

  /// Check the precision of the output tensors. It will compare the same tensor
  /// in two scopes, one of the instruction execution, and the other for the
  /// baseline.
  template <typename T>
  bool CheckPrecision(const std::string& var_name, float abs_error);

  const cpp::OpDesc& op_desc() { return *op_desc_; }

  // Check whether the output tensor is consistent with the output definition in
  // kernel registry.
  void CheckKernelConsistWithDefinition() {}

  Scope& scope() { return *scope_; }

  Scope* baseline_scope() { return base_scope_; }
  Scope* inst_scope() { return inst_scope_; }

 protected:
  // Prepare inputs in scope() for Tester.
  virtual void PrepareData() = 0;

  /// Prepare a tensor in host. The tensors will be created in scope_.
  /// Need to specify the targets other than X86 or ARM.
  template <typename T>
  void SetCommonTensor(const std::string& var_name,
                       const DDim& ddim,
                       const T* data,
                       const LoD& lod = {}) {
    auto* tensor = scope_->NewTensor(var_name);
    tensor->Resize(ddim);
    auto* d = tensor->mutable_data<T>();
    memcpy(d, data, ddim.production() * sizeof(T));

    // set lod
    if (!lod.empty()) *tensor->mutable_lod() = lod;
  }

  // Prepare for the operator.
  virtual void PrepareOpDesc(cpp::OpDesc* op_desc) = 0;

 public:
  const Instruction& instruction() { return *instruction_; }

 private:
  std::unique_ptr<KernelContext> ctx_;
  void CreateInstruction();

  void PrepareScopes() {
    inst_scope_ = &scope_->NewScope();
    base_scope_ = &scope_->NewScope();
  }

  // Check shape
  // TODO(Superjomn) Move this method to utils or DDim?
  bool ShapeEquals(const DDim& a, const DDim& b) {
    if (a.size() != b.size()) return false;
    for (int i = 0; i < a.size(); i++) {
      if (a[i] != b[i]) return false;
    }
    return true;
  }

  /// Copy the input tensors to target devices needed by the instruction.
  void PrepareInputsForInstruction();

  // Create output tensors and variables.
  void PrepareOutputsForInstruction() {
    for (auto x : op_desc().output_vars()) {
      inst_scope_->NewTensor(x);
      base_scope_->NewTensor(x);
    }
  }

 private:
142
  Place place_;
Y
Yan Chunwei 已提交
143
  std::shared_ptr<Scope> scope_;
144
  std::string alias_;
Y
Yan Chunwei 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
  // The workspace for the Instruction.
  Scope* inst_scope_{};
  // The workspace for the baseline implementation.
  Scope* base_scope_{};
  std::unique_ptr<cpp::OpDesc> op_desc_;
  std::unique_ptr<Instruction> instruction_;
};

class Arena {
 public:
  Arena(std::unique_ptr<TestCase>&& tester,
        const Place& place,
        float abs_error = 1e-5)
      : tester_(std::move(tester)), place_(place), abs_error_(abs_error) {
    tester_->Prepare();
  }

  bool TestPrecision() {
    tester_->RunBaseline(tester_->baseline_scope());
    tester_->RunInstruction();

    bool success = true;
    for (auto& out : tester_->op_desc().OutputArgumentNames()) {
      for (auto& var : tester_->op_desc().Output(out)) {
        success = success && CompareTensor(out, var);
      }
    }
    LOG(INFO) << "done";
    return success;
  }

  void TestPerformance(int times = 100) {
    auto timer = std::chrono::high_resolution_clock::now();
    for (int i = 0; i < times; i++) {
      tester_->RunInstruction();
    }
    auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(
        std::chrono::high_resolution_clock::now() - timer);
    LOG(INFO) << "average duration: " << duration.count() << " ms";
  }

 private:
  // input_name: X
  bool CompareTensor(const std::string& arg_name, const std::string& var_name) {
    // get tensor type.
    const Type* type =
        tester_->instruction().kernel()->GetOutputDeclType(arg_name);

    switch (type->precision()) {
      case PRECISION(kFloat):
        return tester_->CheckPrecision<float>(var_name, abs_error_);
      case PRECISION(kInt8):
        return tester_->CheckPrecision<int8_t>(var_name, abs_error_);
      case PRECISION(kInt32):
        return tester_->CheckPrecision<int32_t>(var_name, abs_error_);
      case PRECISION(kBool):
        return tester_->CheckPrecision<bool>(var_name, abs_error_);

      default:
        LOG(FATAL) << "not support type " << PrecisionToStr(type->precision());
205
        return false;
Y
Yan Chunwei 已提交
206 207 208 209 210 211
    }
  }

 private:
  std::unique_ptr<TestCase> tester_;
  Place place_;
212
  float abs_error_;
Y
Yan Chunwei 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
};

template <typename T>
bool TestCase::CheckPrecision(const std::string& var_name, float abs_error) {
  auto a_tensor = inst_scope_->FindTensor(var_name);
  auto b_tensor = base_scope_->FindTensor(var_name);
  CHECK(a_tensor);
  CHECK(b_tensor);

  CHECK(ShapeEquals(a_tensor->dims(), b_tensor->dims()));

  CHECK(a_tensor->lod() == b_tensor->lod()) << "lod not match";

  // The baseline should output in host devices.
  CHECK(b_tensor->target() == TARGET(kHost) ||
        b_tensor->target() == TARGET(kX86) ||
        b_tensor->target() == TARGET(kARM));

  const T* a_data{};
  switch (a_tensor->target()) {
    case TARGET(kX86):
    case TARGET(kHost):
    case TARGET(kARM):
      a_data = static_cast<const T*>(a_tensor->raw_data());
      break;

    default:
      // Before compare, need to copy data from `target` device to host.
      LOG(FATAL) << "Not supported";
  }

  CHECK(a_data);

  const T* b_data = static_cast<const T*>(b_tensor->raw_data());

  bool success = true;
  for (int i = 0; i < a_tensor->dims().production(); i++) {
    EXPECT_NEAR(a_data[i], b_data[i], abs_error);
    if (fabsf(a_data[i] - b_data[i]) > abs_error) {
      success = false;
    }
  }
  return success;
}

}  // namespace arena
}  // namespace lite
}  // namespace paddle