cl_image.h 7.8 KB
Newer Older
L
liuruilong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17 18 19
#include <vector>

#include "CL/cl.h"
L
liuruilong 已提交
20

21
#include "framework/cl/cl_half.h"
L
liuruilong 已提交
22
#include "framework/cl/cl_tool.h"
L
liuruilong 已提交
23 24 25 26 27 28
#include "framework/ddim.h"
#include "framework/tensor.h"

namespace paddle_mobile {
namespace framework {

Y
yangfei 已提交
29 30
enum ImageType { Normal, Folder };

L
liuruilong 已提交
31 32
class CLImage {
 public:
L
liuruilong 已提交
33 34
  CLImage() = default;

L
liuruilong 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  /*
   * will not hold input tensor data, memcpy in this method
   * */
  void SetTensorData(float *tensorData, const DDim &dim) {
    int numel = product(dim);
    if (tensor_data_ != nullptr) {
      delete[](tensor_data_);
    }
    tensor_data_ = new float[numel];
    memcpy(tensor_data_, tensorData, numel);
    tensor_dims_ = dim;
  }

  /*
   * need call SetTensorData first
   * */
L
liuruilong 已提交
51
  void InitCLImage(cl_context context, cl_command_queue command_queue) {
L
liuruilong 已提交
52 53 54
    if (tensor_data_ == nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(" need call SetTensorData first");
    }
D
dolphin8 已提交
55
    if (tensor_dims_.size() <= 2) {
L
liuruilong 已提交
56
      InitCLImage2C(context, command_queue, tensor_data_, tensor_dims_);
D
dolphin8 已提交
57
    } else {
L
liuruilong 已提交
58
      InitCLImage(context, command_queue, tensor_data_, tensor_dims_);
D
dolphin8 已提交
59
    }
L
liuruilong 已提交
60 61 62 63 64
    delete[](tensor_data_);
    tensor_data_ = nullptr;
    initialized_ = true;
  }

Y
yangfei 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
  /*
   * need call SetTensorData first
   * */
  void InitCLImageNormal(cl_context context, cl_command_queue command_queue) {
    if (tensor_data_ == nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(" need call SetTensorData first");
    }
    InitCLImage(context, command_queue, tensor_data_, tensor_dims_);
    delete[](tensor_data_);
    tensor_data_ = nullptr;
    initialized_ = true;
  }

L
liuruilong 已提交
78 79
  void InitEmptyImage(cl_context context, cl_command_queue command_queue,
                      const DDim &dim) {
L
liuruilong 已提交
80 81 82 83
    if (tensor_data_ != nullptr) {
      PADDLE_MOBILE_THROW_EXCEPTION(
          " empty image tensor data shouldn't have value");
    }
L
liuruilong 已提交
84
    DLOG << " init empty image ";
L
liuruilong 已提交
85
    InitCLImage(context, command_queue, nullptr, dim);
L
liuruilong 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    initialized_ = true;
  }

  cl_mem GetCLImage() const { return cl_image_; }

  const DDim &ImageDims() { return image_dims_; }

  inline size_t ImageWidth() const { return image_width_; }

  inline size_t ImageHeight() const { return image_height_; }

  /*
   * block of channels, 4 channel one block
   * */
  inline size_t CBlock() const { return c_block_; }

  /*
   *  width of original tensor
   * */
  inline size_t WidthOfOneBlock() const { return width_of_one_block_; }

  /*
   *  height of original tensor
   * */
  inline size_t HeightOfOneBlock() const { return height_of_one_block_; }

L
liuruilong 已提交
112
  inline cl_command_queue CommandQueue() const { return command_queue_; }
Y
yangfei 已提交
113

L
liuruilong 已提交
114 115 116 117 118 119 120 121 122 123 124 125
  /*
   *  resize original tensor dim
   * */
  inline CLImage &Resize(const DDim &dims) {
    tensor_dims_ = dims;
    return *this;
  }

  template <typename T>
  T *data() const {
    if (initialized_) {
      PADDLE_MOBILE_THROW_EXCEPTION(
L
liuruilong 已提交
126 127
          " cl image has initialized, tensor data has been deleted, can't use "
          "tensor data");
L
liuruilong 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141
    }
    return reinterpret_cast<T *>(tensor_data_);
  }

  /*
   *  numel of tensor dim
   * */
  inline int64_t numel() const { return product(tensor_dims_); }

  /*
   *  original tensor dim
   * */
  const DDim &dims() const { return tensor_dims_; }

Y
yangfei 已提交
142 143
  const ImageType GetImageType() const { type; }

L
liuruilong 已提交
144
 private:
Y
yangfei 已提交
145
  ImageType type;
L
liuruilong 已提交
146 147
  void InitCLImage2C(cl_context context, cl_command_queue command_queue,
                     float *tensor_data, const DDim &dim) {
Y
yangfei 已提交
148
    type = Folder;
Y
yangfei 已提交
149
    command_queue_ = command_queue;
D
dolphin8 已提交
150 151 152 153 154 155 156 157
    assert(dim.size() <= 2);
    int tdim[2] = {1, 1};
    if (dim.size() == 1) {
      tdim[1] = dim[0];
    } else {
      tdim[0] = dim[0];
      tdim[1] = dim[1];
    }
Y
yangfei 已提交
158
    int width = (tdim[1] + 3) / 4;
D
dolphin8 已提交
159 160 161 162 163 164
    int height = tdim[0];
    std::unique_ptr<half_t[]> imageData{};
    if (tensor_data) {
      imageData.reset(new half_t[width * height * 4]);
      for (int h = 0; h < tdim[0]; h++) {
        for (int w = 0; w < tdim[1]; w++) {
L
liuruilong 已提交
165 166
          imageData[(h * width + w / 4) * 4 + (w % 4)] =
              Float2Half(tensor_data[h * tdim[1] + w]);
D
dolphin8 已提交
167 168 169 170 171 172
        }
      }
    }
    InitCLImage(context, width, height, imageData.get());
  }

L
liuruilong 已提交
173
  void InitCLImage(cl_context context, int width, int height, void *data) {
D
dolphin8 已提交
174 175 176
    cl_image_format cf = {.image_channel_order = CL_RGBA,
                          .image_channel_data_type = CL_HALF_FLOAT};
    cl_image_desc cid = {
L
liuruilong 已提交
177 178 179 180 181 182 183 184 185 186
        .image_type = CL_MEM_OBJECT_IMAGE2D,
        .image_width = width,
        .image_height = height,
        .image_depth = 1,
        .image_array_size = 1,
        .image_row_pitch = 0,
        .image_slice_pitch = 0,
        .num_mip_levels = 0,
        .num_samples = 0,
        // .buffer = nullptr
D
dolphin8 已提交
187 188 189 190
    };
    cid.buffer = nullptr;
    cl_int err;
    cl_image_ = clCreateImage(
L
liuruilong 已提交
191 192 193 194 195
        context, CL_MEM_READ_WRITE | (data ? CL_MEM_COPY_HOST_PTR : 0),
        &cf,   // const cl_image_format *image_format
        &cid,  // const cl_image_desc *image_desc
        data,  // void *host_ptr
        &err);
D
dolphin8 已提交
196 197 198 199 200
    if (err != CL_SUCCESS) {
      CL_CHECK_ERRORS(err);
      PADDLE_MOBILE_THROW_EXCEPTION(" create image 2d error ");
    }
  }
L
liuruilong 已提交
201 202
  void InitCLImage(cl_context context, cl_command_queue command_queue,
                   float *tensor_data, const DDim &dim) {
Y
yangfei 已提交
203
    type = Normal;
L
liuruilong 已提交
204
    DLOG << " tensor dim: " << dim;
D
dolphin8 已提交
205
    // NCHW -> [W * (C+3)/4, H * N]
Y
yangfei 已提交
206
    tensor_dims_ = dim;
Y
yangfei 已提交
207
    command_queue_ = command_queue;
Y
yangfei 已提交
208 209 210
    if (tensor_data) {
      tensor_data_ = tensor_data;
    }
L
liuruilong 已提交
211
    size_t new_dims[] = {1, 1, 1, 1};
L
liuruilong 已提交
212

L
liuruilong 已提交
213 214
    for (int j = 0; j < dim.size(); ++j) {
      new_dims[4 - dim.size() + j] = dim[j];
Y
yangfei 已提交
215 216
    }

L
liuruilong 已提交
217 218 219 220 221 222 223 224 225 226
    size_t N, C, H, W;

    N = new_dims[0];
    C = new_dims[1];
    H = new_dims[2];
    W = new_dims[3];

    width_of_one_block_ = W;
    height_of_one_block_ = H;

D
dolphin8 已提交
227 228
    size_t width = W * ((C + 3) / 4);
    size_t height = H * N;
L
liuruilong 已提交
229 230 231

    image_width_ = width;
    image_height_ = height;
L
liuruilong 已提交
232
    image_dims_ = make_ddim({image_width_, image_height_});
L
liuruilong 已提交
233
    c_block_ = W / width;
L
liuruilong 已提交
234

D
dolphin8 已提交
235
    std::unique_ptr<half_t[]> imageData{};
236
    int count = 0;
L
liuruilong 已提交
237
    if (tensor_data != nullptr) {
D
dolphin8 已提交
238
      imageData.reset(new half_t[width * height * 4]);
L
liuruilong 已提交
239
      float *p = tensor_data;
240 241 242
      size_t i0 = 0;
      for (int n = 0; n < N; n++) {
        for (int c = 0; c < C; c++) {
D
dolphin8 已提交
243
          size_t i1 = i0 + (c / 4) * W;
244 245 246
          for (int h = 0; h < H; h++) {
            size_t i2 = (i1 << 2) + c % 4;
            for (int w = 0; w < W; w++) {
Y
yangfei 已提交
247 248
              // int x = (n * width * H + h * width + (c / 4) * W + w) * 4 + (c
              // % 4);
L
liuruilong 已提交
249
              imageData[i2] = Float2Half(*p);
250 251 252 253 254 255 256 257
              i2 += 4;
              p++;
            }
            i1 += width;
          }
        }
        i0 += width * H;
      }
D
dolphin8 已提交
258
    }
D
dolphin8 已提交
259
    InitCLImage(context, width, height, imageData.get());
L
liuruilong 已提交
260 261
  }

L
liuruilong 已提交
262
  bool initialized_ = false;
L
liuruilong 已提交
263
  cl_mem cl_image_;
L
liuruilong 已提交
264 265 266 267 268
  size_t image_width_;
  size_t width_of_one_block_;
  size_t height_of_one_block_;
  size_t image_height_;
  size_t c_block_;
269
  DDim tensor_dims_;
L
liuruilong 已提交
270 271
  DDim image_dims_;
  float *tensor_data_;
L
liuruilong 已提交
272
  cl_context context_;
Y
yangfei 已提交
273
  cl_command_queue command_queue_;
L
liuruilong 已提交
274 275
};

L
liuruilong 已提交
276 277
void TensorToCLImage(Tensor *tensor, CLImage *image,
                     cl_command_queue commandQueue);
Y
yangfei 已提交
278

L
liuruilong 已提交
279 280
void CLImageToTensor(CLImage *image, Tensor *tensor,
                     cl_command_queue commandQueue);
L
liuruilong 已提交
281

L
liuruilong 已提交
282 283 284 285
#ifdef PADDLE_MOBILE_DEBUG
Print &operator<<(Print &printer, const CLImage &image);
#endif

286 287
}  // namespace framework
}  // namespace paddle_mobile