layer_norm_compute_test.cc 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"

namespace paddle {
namespace lite {

class LayerNormComputeTest : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string op_type_ = "layer_norm";
  std::string input_ = "x";
  std::string scale_ = "scale";
  std::string bias_ = "bias";
  std::string output_ = "y";
  std::string mean_ = "mean";
  std::string variance_ = "variance";
  DDim dims_{{4, 5, 19, 19}};
  float epsilon_ = 1e-5f;
  int begin_norm_axis_ = 1;
  bool has_bias_ = true;
  bool has_scale_ = true;

 public:
  LayerNormComputeTest(const Place& place,
                       const std::string& alias,
                       DDim dims,
                       float epsilon,
                       int begin_norm_axis,
                       bool has_bias,
                       bool has_scale)
      : TestCase(place, alias),
        dims_(dims),
        epsilon_(epsilon),
        begin_norm_axis_(begin_norm_axis),
        has_bias_(has_bias),
        has_scale_(has_scale) {}

  void RunBaseline(Scope* scope) override {
    auto x = scope->FindTensor(input_);
    auto scale = scope->FindTensor(scale_);
    auto bias = scope->FindTensor(bias_);

    auto y = scope->NewTensor(output_);
    auto mean = scope->NewTensor(mean_);
    auto variance = scope->NewTensor(variance_);
    CHECK(y);
    CHECK(mean);
    CHECK(variance);
    y->Resize(dims_);

    auto matrix_dim = dims_.Flatten2D(begin_norm_axis_);
    int batch_size = matrix_dim[0];
    int feature_size = matrix_dim[1];
    mean->Resize(std::vector<int64_t>{batch_size});
    variance->Resize(std::vector<int64_t>{batch_size});

    auto* x_data = x->data<float>();
    auto* scale_data = (scale == nullptr ? nullptr : scale->data<float>());
    auto* bias_data = (bias == nullptr ? nullptr : bias->data<float>());
    auto* out_data = y->mutable_data<float>();
    auto* mean_data = mean->mutable_data<float>();
    auto* variance_data = variance->mutable_data<float>();

    for (int i = 0; i < batch_size; ++i) {
      int start = i * feature_size;
      int end = start + feature_size;

      float mean_t = 0;
      float variance_t = 0;
      for (int j = start; j < end; ++j) {
        mean_t += x_data[j];
        variance_t += x_data[j] * x_data[j];
      }
      mean_t /= feature_size;
      variance_t = variance_t / feature_size - mean_t * mean_t;
      mean_data[i] = mean_t;
      variance_data[i] = variance_t;
      variance_t = sqrt(variance_t + epsilon_);
      for (int j = start; j < end; ++j) {
        out_data[j] = (x_data[j] - mean_t) / variance_t;
        if (scale_data) {
          out_data[j] *= scale_data[j - start];
        }
        if (bias_data) {
          out_data[j] += bias_data[j - start];
        }
      }
    }
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType(op_type_);
    op_desc->SetInput("X", {input_});
    op_desc->SetInput("Bias", {bias_});
    op_desc->SetInput("Scale", {scale_});
    op_desc->SetOutput("Y", {output_});
    op_desc->SetOutput("Mean", {mean_});
    op_desc->SetOutput("Variance", {variance_});
    op_desc->SetAttr("epsilon", epsilon_);
    op_desc->SetAttr("begin_norm_axis", begin_norm_axis_);
  }

  void PrepareData() override {
    std::vector<float> din(dims_.production());
    fill_data_rand(din.data(), -1.f, 1.f, dims_.production());

    std::vector<int64_t> scale_v;
    for (size_t i = begin_norm_axis_; i < dims_.size(); i++) {
      scale_v.push_back(dims_[i]);
    }
    DDim scale_dim(scale_v);
    std::vector<float> scale(scale_dim.production());
    fill_data_rand(scale.data(), -1.f, 1.f, scale_dim.production());

    std::vector<float> bias(scale_dim.production());
    fill_data_rand(bias.data(), -1.f, 1.f, scale_dim.production());

    SetCommonTensor(input_, dims_, din.data());
    SetCommonTensor(scale_, scale_dim, scale.data());
    SetCommonTensor(bias_, scale_dim, bias.data());
  }
};

TEST(LayerNorm, precision) {
  LOG(INFO) << "test layer_norm op";
  float abs_error = 2e-5;
  Place place;
#if defined(LITE_WITH_XPU)
  place = TARGET(kXPU);
#elif defined(LITE_WITH_ARM)
  place = TARGET(kARM);
  abs_error = 6e-5;
#else
  return;
#endif

  std::vector<std::vector<int64_t>> dims{{1, 2, 3, 4}, {2, 3, 4}, {3, 4}};
  for (auto dim_in : dims) {
    for (auto epsilon : {1e-5f}) {
      for (auto axis : {0, 1, 2, 3}) {
        for (bool has_bias : {true, false}) {
          for (bool has_scale : {true, false}) {
            if (axis >= dim_in.size()) continue;
            std::unique_ptr<arena::TestCase> tester(
                new LayerNormComputeTest(place,
                                         "def",
                                         DDim(dim_in),
                                         epsilon,
                                         axis,
                                         has_bias,
                                         has_scale));
#ifdef LITE_WITH_ARM
            auto& ctx = tester->context()->As<ARMContext>();
            ctx.SetRunMode(lite_api::LITE_POWER_HIGH, 4);
#endif
            arena::Arena arena(std::move(tester), place, abs_error);
            arena.TestPrecision({"mean", "variance"});
          }
        }
      }
    }
  }
}

}  // namespace lite
}  // namespace paddle