提交 aadb65d2 编写于 作者: Z zhupengyang 提交者: GitHub

[XPU] add layer_norm bridge and unit test (#2640)

test=develop
上级 18661d68
......@@ -16,6 +16,7 @@ lite_cc_library(subgraph_bridge_mul_op_xpu SRCS mul_op.cc DEPS ${xpu_subgraph_br
lite_cc_library(subgraph_bridge_batch_norm_op_xpu SRCS batch_norm_op.cc DEPS ${xpu_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_transpose_op_xpu SRCS transpose_op.cc DEPS ${xpu_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_reshape_op_xpu SRCS reshape_op.cc DEPS ${xpu_subgraph_bridge_deps})
lite_cc_library(subgraph_bridge_layer_norm_op_xpu SRCS layer_norm_op.cc DEPS ${xpu_subgraph_bridge_deps})
set(xpu_subgraph_bridges
subgraph_bridge_registry
......@@ -30,6 +31,7 @@ set(xpu_subgraph_bridges
subgraph_bridge_batch_norm_op_xpu
subgraph_bridge_transpose_op_xpu
subgraph_bridge_reshape_op_xpu
subgraph_bridge_layer_norm_op_xpu
CACHE INTERNAL "xpu_subgraph_bridges")
message(STATUS "+++++ xpu_subgraph_bridges: ${xpu_subgraph_bridges}")
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/xpu/bridges/graph.h"
#include "lite/kernels/xpu/bridges/utility.h"
namespace paddle {
namespace lite {
namespace subgraph {
namespace xpu {
int LayerNormConverter(void* ctx, OpLite* op) {
CHECK(ctx != nullptr);
CHECK(op != nullptr);
auto graph = static_cast<Graph*>(ctx);
auto op_info = op->op_info();
auto op_type = op_info->Type();
auto scope = op->scope();
VLOG(3) << "[XPU] Converting " + op_type + "...";
// Get input vars and op attributes
auto x_var_name = op_info->Input("X").front();
auto scale_var_name = op_info->Input("Scale").front();
auto* scale = scope->FindMutableTensor(scale_var_name);
auto bias_var_name = op_info->Input("Bias").front();
auto* bias = scope->FindMutableTensor(bias_var_name);
auto y_var_name = op_info->Output("Y").front();
auto epsilon = op_info->GetAttr<float>("epsilon");
auto axis = op_info->GetAttr<int>("begin_norm_axis");
// Create scale, bias nodes
auto scale_const_node = graph->AddNode(scale_var_name, *scale);
auto bias_const_node = graph->AddNode(bias_var_name, *bias);
// Create node and set params from op
auto layer_norm_node =
graph->builder_.CreateLayerNorm(*graph->GetNode(x_var_name),
*scale_const_node,
*bias_const_node,
axis,
epsilon,
true,
true);
graph->AddNode(y_var_name, graph->builder_.GetField(layer_norm_node, 0));
return SUCCESS;
}
} // namespace xpu
} // namespace subgraph
} // namespace lite
} // namespace paddle
REGISTER_SUBGRAPH_BRIDGE(XPU,
layer_norm,
paddle::lite::subgraph::xpu::LayerNormConverter);
......@@ -30,7 +30,7 @@ bool LayerNormOp::CheckShape() const {
bool LayerNormOp::InferShape() const {
auto out_dims = param_.X->dims();
param_.Y->Resize(out_dims);
auto inner_size = out_dims.Flatten2D(param_.begin_norm_axis)[1];
auto inner_size = out_dims.Flatten2D(param_.begin_norm_axis)[0];
param_.Mean->Resize(std::vector<int64_t>({inner_size}));
param_.Variance->Resize(std::vector<int64_t>({inner_size}));
......
......@@ -26,6 +26,7 @@ if((NOT LITE_WITH_OPENCL AND NOT LITE_WITH_FPGA) AND (LITE_WITH_X86 OR LITE_WITH
lite_cc_test(test_concat_compute SRCS concat_compute_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_transpose_compute SRCS transpose_compute_test.cc DEPS arena_framework ${xpu_kernels} ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_reshape_compute SRCS reshape_compute_test.cc DEPS arena_framework ${xpu_kernels} ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
lite_cc_test(test_kernel_layer_norm_compute SRCS layer_norm_compute_test.cc DEPS arena_framework ${xpu_kernels} ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
if(LITE_BUILD_EXTRA)
lite_cc_test(test_gru_unit SRCS gru_unit_test.cc DEPS arena_framework ${x86_kernels} ${arm_kernels} ${lite_ops} ${host_kernels})
......
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
#include "lite/tests/utils/fill_data.h"
namespace paddle {
namespace lite {
class LayerNormComputeTest : public arena::TestCase {
protected:
// common attributes for this op.
std::string op_type_ = "layer_norm";
std::string input_ = "x";
std::string scale_ = "scale";
std::string bias_ = "bias";
std::string output_ = "y";
std::string mean_ = "mean";
std::string variance_ = "variance";
DDim dims_{{4, 5, 19, 19}};
float epsilon_ = 1e-5f;
int begin_norm_axis_ = 1;
bool has_bias_ = true;
bool has_scale_ = true;
public:
LayerNormComputeTest(const Place& place,
const std::string& alias,
DDim dims,
float epsilon,
int begin_norm_axis,
bool has_bias,
bool has_scale)
: TestCase(place, alias),
dims_(dims),
epsilon_(epsilon),
begin_norm_axis_(begin_norm_axis),
has_bias_(has_bias),
has_scale_(has_scale) {}
void RunBaseline(Scope* scope) override {
auto x = scope->FindTensor(input_);
auto scale = scope->FindTensor(scale_);
auto bias = scope->FindTensor(bias_);
auto y = scope->NewTensor(output_);
auto mean = scope->NewTensor(mean_);
auto variance = scope->NewTensor(variance_);
CHECK(y);
CHECK(mean);
CHECK(variance);
y->Resize(dims_);
auto matrix_dim = dims_.Flatten2D(begin_norm_axis_);
int batch_size = matrix_dim[0];
int feature_size = matrix_dim[1];
mean->Resize(std::vector<int64_t>{batch_size});
variance->Resize(std::vector<int64_t>{batch_size});
auto* x_data = x->data<float>();
auto* scale_data = (scale == nullptr ? nullptr : scale->data<float>());
auto* bias_data = (bias == nullptr ? nullptr : bias->data<float>());
auto* out_data = y->mutable_data<float>();
auto* mean_data = mean->mutable_data<float>();
auto* variance_data = variance->mutable_data<float>();
for (int i = 0; i < batch_size; ++i) {
int start = i * feature_size;
int end = start + feature_size;
float mean_t = 0;
float variance_t = 0;
for (int j = start; j < end; ++j) {
mean_t += x_data[j];
variance_t += x_data[j] * x_data[j];
}
mean_t /= feature_size;
variance_t = variance_t / feature_size - mean_t * mean_t;
mean_data[i] = mean_t;
variance_data[i] = variance_t;
variance_t = sqrt(variance_t + epsilon_);
for (int j = start; j < end; ++j) {
out_data[j] = (x_data[j] - mean_t) / variance_t;
if (scale_data) {
out_data[j] *= scale_data[j - start];
}
if (bias_data) {
out_data[j] += bias_data[j - start];
}
}
}
}
void PrepareOpDesc(cpp::OpDesc* op_desc) {
op_desc->SetType(op_type_);
op_desc->SetInput("X", {input_});
op_desc->SetInput("Bias", {bias_});
op_desc->SetInput("Scale", {scale_});
op_desc->SetOutput("Y", {output_});
op_desc->SetOutput("Mean", {mean_});
op_desc->SetOutput("Variance", {variance_});
op_desc->SetAttr("epsilon", epsilon_);
op_desc->SetAttr("begin_norm_axis", begin_norm_axis_);
}
void PrepareData() override {
std::vector<float> din(dims_.production());
fill_data_rand(din.data(), -1.f, 1.f, dims_.production());
std::vector<int64_t> scale_v;
for (size_t i = begin_norm_axis_; i < dims_.size(); i++) {
scale_v.push_back(dims_[i]);
}
DDim scale_dim(scale_v);
std::vector<float> scale(scale_dim.production());
fill_data_rand(scale.data(), -1.f, 1.f, scale_dim.production());
std::vector<float> bias(scale_dim.production());
fill_data_rand(bias.data(), -1.f, 1.f, scale_dim.production());
SetCommonTensor(input_, dims_, din.data());
SetCommonTensor(scale_, scale_dim, scale.data());
SetCommonTensor(bias_, scale_dim, bias.data());
}
};
TEST(LayerNorm, precision) {
LOG(INFO) << "test layer_norm op";
float abs_error = 2e-5;
Place place;
#if defined(LITE_WITH_XPU)
place = TARGET(kXPU);
#elif defined(LITE_WITH_ARM)
place = TARGET(kARM);
abs_error = 6e-5;
#else
return;
#endif
std::vector<std::vector<int64_t>> dims{{1, 2, 3, 4}, {2, 3, 4}, {3, 4}};
for (auto dim_in : dims) {
for (auto epsilon : {1e-5f}) {
for (auto axis : {0, 1, 2, 3}) {
for (bool has_bias : {true, false}) {
for (bool has_scale : {true, false}) {
if (axis >= dim_in.size()) continue;
std::unique_ptr<arena::TestCase> tester(
new LayerNormComputeTest(place,
"def",
DDim(dim_in),
epsilon,
axis,
has_bias,
has_scale));
#ifdef LITE_WITH_ARM
auto& ctx = tester->context()->As<ARMContext>();
ctx.SetRunMode(lite_api::LITE_POWER_HIGH, 4);
#endif
arena::Arena arena(std::move(tester), place, abs_error);
arena.TestPrecision({"mean", "variance"});
}
}
}
}
}
}
} // namespace lite
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册