test_concat_op.cpp 6.3 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

E
eclipsess 已提交
15 16 17 18 19 20 21
#pragma once
#include "../test_include.h"
#include "operators/concat_op.h"

namespace paddle_mobile {
namespace framework {

22 23 24
template <typename Dtype>
class TestConcatOp {
 public:
25 26 27 28 29
  explicit TestConcatOp(const Program<Dtype> p) : program_(p) {
    if (use_optimize_) {
      to_predict_program_ = program_.optimizeProgram;
    } else {
      to_predict_program_ = program_.originProgram;
E
eclipsess 已提交
30 31
    }

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    const std::vector<std::shared_ptr<BlockDesc>> blocks =
        to_predict_program_->Blocks();
    //  DLOG << " **block size " << blocks.size();
    for (int i = 0; i < blocks.size(); ++i) {
      std::shared_ptr<BlockDesc> block_desc = blocks[i];
      std::vector<std::shared_ptr<OpDesc>> ops = block_desc->Ops();
      //    DLOG << " ops " << ops.size();
      for (int j = 0; j < ops.size(); ++j) {
        std::shared_ptr<OpDesc> op = ops[j];
        if (op->Type() == "concat" && op->Input("X")[0] == "conv2d_3.tmp_1") {
          DLOG << " mul attr size: " << op->GetAttrMap().size();
          DLOG << " inputs size: " << op->GetInputs().size();
          DLOG << " outputs size: " << op->GetOutputs().size();
          DLOG << " Input X is : " << op->Input("X")[0];
          DLOG << " Output Out is : " << op->Output("Out")[0];
          DLOG << " axis : " << op->GetAttrMap().at("axis").Get<int>();

          std::shared_ptr<operators::ConcatOp<Dtype, float>> concat =
              std::make_shared<operators::ConcatOp<Dtype, float>>(
                  op->Type(), op->GetInputs(), op->GetOutputs(),
                  op->GetAttrMap(), program_.scope);
          ops_of_block_[*block_desc.get()].push_back(concat);
E
eclipsess 已提交
54
        }
55 56 57 58
      }
    }
  }

59 60
  std::shared_ptr<Tensor> predict_concat(const Tensor &t1, const Tensor &t2,
                                         const Tensor &t3, const Tensor &t4) {
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    // feed
    auto scope = program_.scope;
    Variable *x1_feed_value = scope->Var("conv2d_3.tmp_1");
    auto tensor_x1 = x1_feed_value->GetMutable<Tensor>();
    tensor_x1->ShareDataWith(t1);

    Variable *x2_feed_value = scope->Var("conv2d_5.tmp_1");
    auto tensor_x2 = x2_feed_value->GetMutable<Tensor>();
    tensor_x2->ShareDataWith(t2);

    Variable *x3_feed_value = scope->Var("conv2d_7.tmp_1");
    auto tensor_x3 = x3_feed_value->GetMutable<Tensor>();
    tensor_x3->ShareDataWith(t3);

    Variable *x4_feed_value = scope->Var("conv2d_8.tmp_1");
    auto tensor_x4 = x4_feed_value->GetMutable<Tensor>();
    tensor_x4->ShareDataWith(t4);

    Variable *con_output = scope->Var("concat_0.tmp_0");
    auto *output_tensor = con_output->GetMutable<Tensor>();
    output_tensor->mutable_data<float>({4, 100, 2, 2});
    //  DLOG << typeid(output_tensor).name();
    //  DLOG << "output_tensor dims: " << output_tensor->dims();

    std::shared_ptr<Tensor> out_tensor = std::make_shared<LoDTensor>();
    out_tensor.reset(output_tensor);

    predict_concat(t1, t2, t3, t4, 0);
    return out_tensor;
  }

92
 private:
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  const framework::Program<Dtype> program_;
  std::shared_ptr<ProgramDesc> to_predict_program_;
  std::map<framework::BlockDesc,
           std::vector<std::shared_ptr<OperatorBase<Dtype>>>>
      ops_of_block_;
  bool use_optimize_ = false;

  void predict_concat(const Tensor &t1, const Tensor &t2, const Tensor &t3,
                      const Tensor &t4, int block_id) {
    std::shared_ptr<BlockDesc> to_predict_block =
        to_predict_program_->Block(block_id);
    for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
      auto op = ops_of_block_[*to_predict_block.get()][j];
      DLOG << "op -> run()";
      op->Run();
E
eclipsess 已提交
108
    }
109
  }
E
eclipsess 已提交
110 111 112
};

template class TestConcatOp<CPU>;
113 114
}  // namespace framework
}  // namespace paddle_mobile
E
eclipsess 已提交
115 116

int main() {
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
  DLOG << "----------**********----------";
  DLOG << "begin to run ConcatOp Test";
  paddle_mobile::Loader<paddle_mobile::CPU> loader;
  auto program = loader.Load(std::string("../../test/models/googlenet"));

  /// input x (4,10,2,2)
  paddle_mobile::framework::Tensor inputx1;
  SetupTensor<float>(&inputx1, {4, 10, 2, 2}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputx1_ptr = inputx1.data<float>();
  /// input x (4,20,2,2)
  paddle_mobile::framework::Tensor inputx2;
  SetupTensor<float>(&inputx2, {4, 20, 2, 2}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputx2_ptr = inputx2.data<float>();
  /// input x (4,30,2,2)
  paddle_mobile::framework::Tensor inputx3;
  SetupTensor<float>(&inputx3, {4, 30, 2, 2}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputx3_ptr = inputx3.data<float>();
  /// input x (4,40,2,2)
  paddle_mobile::framework::Tensor inputx4;
  SetupTensor<float>(&inputx4, {4, 40, 2, 2}, static_cast<float>(0),
                     static_cast<float>(1));
  auto *inputx4_ptr = inputx4.data<float>();

  paddle_mobile::framework::TestConcatOp<paddle_mobile::CPU> testConcatOp(
      program);

  auto output_concat =
      testConcatOp.predict_concat(inputx1, inputx2, inputx3, inputx4);
  auto *output_concat_ptr = output_concat->data<float>();

  int input_n = 1;
  int input_c = 2;
  int input_h = 0;
  int input_w = 1;
  int stride0 = inputx3.numel() / inputx3.dims()[0];
  int stride1 = inputx3.numel() / inputx3.dims()[0] / inputx3.dims()[1];
  int stride2 = inputx3.dims()[3];
  /// inputx1 (4,10,2,2),
  /// inputx2 (4,20,2,2),
  /// inputx3 (4,30,2,2),
  /// inputx4 (4,40,2,2),
  /// axis = 1
  /// output (4,100,2,2)
  int input_index =
      input_n * stride0 + input_c * stride1 + input_h * stride2 + input_w;
  int output_index = input_n * 100 * 2 * 2 +
                     (input_c + inputx1.dims()[1] + inputx2.dims()[1]) * 2 * 2 +
                     input_h * 2 + input_w;

  DLOG << " inputx3[1,2,0,1] = " << inputx3_ptr[input_index];
  DLOG << " output[1,12,0,1] = " << output_concat_ptr[output_index];
  return 0;
E
eclipsess 已提交
172
}