model_optimize_tool.md 8.6 KB
Newer Older
1 2 3

# 模型转化方法

H
huzhiqiang 已提交
4
Paddle-Lite 提供了多种策略来自动优化原始的训练模型,其中包括量化、子图融合、混合调度、Kernel优选等等方法。为了使优化过程更加方便易用,我们提供了**opt** 工具来自动完成优化步骤,输出一个轻量的、最优的可执行模型。
5

H
huzhiqiang 已提交
6 7 8
具体使用方法介绍如下:

**注意**`v2.2.0` 之前的模型转化工具名称为`model_optimize_tool`,从 `v2.3` 开始模型转化工具名称修改为 `opt`
9 10 11 12

## 准备opt
当前获得opt方法有三种:

H
huzhiqiang 已提交
13
1. **推荐!** 可以进入Paddle-Lite Github仓库的[release界面](https://github.com/PaddlePaddle/Paddle-Lite/releases),选择release版本下载对应的转化工具`opt`    
14 15
   (release/v2.2.0之前的转化工具为model_optimize_tool、release/v2.3.0之后为opt)

H
huzhiqiang 已提交
16 17 18 19 20
2. 我们提供`release/v2.3`编译结果下载:[opt](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.3.0/opt)[opt_mac](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.3.0/opt_mac)
`release/v2.2.0`版本的model_optimize_tool: [model_optimize_tool](https://paddlelite-data.bj.bcebos.com/model_optimize_tool/model_optimize_tool)[model_optimize_tool_mac](https://paddlelite-data.bj.bcebos.com/model_optimize_tool/model_optimize_tool_mac)


3. 如果 release 列表里的工具不符合您的环境,可以下载Paddle-Lite 源码,源码编译出opt工具
21 22 23 24 25 26 27 28 29 30 31
```bash
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout <release-version-tag>
./lite/tools/build.sh build_optimize_tool
```
编译结果位于`Paddle-Lite/build.opt/lite/api/opt`
**注意**:从源码编译opt前需要先[安装Paddle-Lite的开发环境](../installation/source_compile)

## 使用opt

H
huzhiqiang 已提交
32
opt是 x86 平台上的可执行文件,需要在PC端运行:支持Linux终端和Mac终端。
33 34 35 36 37 38 39 40 41

### 帮助信息
 执行opt时不加入任何输入选项,会输出帮助信息,提示当前支持的选项:
```bash
 ./opt
```
![](https://paddlelite-data.bj.bcebos.com/doc_images/1.png)

### 功能一:转化模型为Paddle-Lite格式
H
huzhiqiang 已提交
42 43 44 45
opt可以将PaddlePaddle的部署模型格式转化为Paddle-Lite 支持的模型格式,期间执行的操作包括:

- 将protobuf格式的模型文件转化为naive_buffer格式的模型文件,有效降低模型体积
- 执行“量化、子图融合、混合调度、Kernel优选”等图优化操作,提升其在Paddle-Lite上的运行速度、内存占用等效果
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

模型优化过程:

(1)准备待优化的PaddlePaddle模型

PaddlePaddle模型有两种保存格式:
   Combined Param:所有参数信息保存在单个文件`params`中,模型的拓扑信息保存在`__model__`文件中。

![opt_combined_model](https://paddlelite-data.bj.bcebos.com/doc_images%2Fcombined_model.png)

   Seperated Param:参数信息分开保存在多个参数文件中,模型的拓扑信息保存在`__model__`文件中。
![opt_seperated_model](https://paddlelite-data.bj.bcebos.com/doc_images%2Fseperated_model.png)

(2) 终端中执行`opt`优化模型
**使用示例**:转化`mobilenet_v1`模型

```
H
huzhiqiang 已提交
63 64 65 66
./opt --model_dir=./mobilenet_v1 \
      --valid_targets=arm \
      --optimize_out_type=naive_buffer \
      --optimize_out=mobilenet_v1_opt
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
```
以上命令可以将`mobilenet_v1`模型转化为arm硬件平台、naive_buffer格式的Paddle_Lite支持模型,优化后的模型文件为`mobilenet_v1_opt.nb`,转化结果如下图所示:

![opt_resulted_model](https://paddlelite-data.bj.bcebos.com/doc_images/2.png)


(3) **更详尽的转化命令**总结:

```shell
./opt \
    --model_dir=<model_param_dir> \
    --model_file=<model_path> \
    --param_file=<param_path> \
    --optimize_out_type=(protobuf|naive_buffer) \
    --optimize_out=<output_optimize_model_dir> \
    --valid_targets=(arm|opencl|x86|npu|xpu) \
    --prefer_int8_kernel=(true|false) \
    --record_tailoring_info =(true|false)
```

| 选项         | 说明 |
| ------------------- | ------------------------------------------------------------ |
| --model_dir         | 待优化的PaddlePaddle模型(非combined形式)的路径 |
| --model_file        | 待优化的PaddlePaddle模型(combined形式)的网络结构文件路径。 |
| --param_file        | 待优化的PaddlePaddle模型(combined形式)的权重文件路径。 |
| --optimize_out_type | 输出模型类型,目前支持两种类型:protobuf和naive_buffer,其中naive_buffer是一种更轻量级的序列化/反序列化实现。若您需要在mobile端执行模型预测,请将此选项设置为naive_buffer。默认为protobuf。 |
| --optimize_out      | 优化模型的输出路径。                                         |
| --valid_targets     | 指定模型可执行的backend,默认为arm。目前可支持x86、arm、opencl、npu、xpu,可以同时指定多个backend(以空格分隔),Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPU(Kirin 810/990 Soc搭载的达芬奇架构NPU),应当设置为npu, arm。 |
| --prefer_int8_kernel | 若待优化模型为int8量化模型(如量化训练得到的量化模型),则设置该选项为true以使用int8内核函数进行推理加速,默认为false。                          |
| --record_tailoring_info | 当使用 [根据模型裁剪库文件](./library_tailoring.html) 功能时,则设置该选项为true,以记录优化后模型含有的kernel和OP信息,默认为false。 |

* 如果待优化的fluid模型是非combined形式,请设置`--model_dir`,忽略`--model_file``--param_file`
* 如果待优化的fluid模型是combined形式,请设置`--model_file``--param_file`,忽略`--model_dir`
H
huzhiqiang 已提交
100
* 优化后的模型为以`.nb`名称结尾的单个文件。
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

### 功能二:统计模型算子信息、判断是否支持

opt可以统计并打印出model中的算子信息、判断Paddle-Lite是否支持该模型。并可以打印出当前Paddle-Lite的算子支持情况。

(1)使用opt统计模型中算子信息

下面命令可以打印出mobilenet_v1模型中包含的所有算子,并判断在硬件平台`valid_targets`下Paddle-Lite是否支持该模型

`./opt --print_model_ops=true  --model_dir=mobilenet_v1 --valid_targets=arm`

![opt_print_modelops](https://paddlelite-data.bj.bcebos.com/doc_images/3.png)

(2)使用opt打印当前Paddle-Lite支持的算子信息

`./opt --print_all_ops=true`

以上命令可以打印出当前Paddle-Lite支持的所有算子信息,包括OP的数量和每个OP支持哪些硬件平台:

![opt_print_allops](https://paddlelite-data.bj.bcebos.com/doc_images/4.png)

`./opt ----print_supported_ops=true  --valid_targets=x86`

以上命令可以打印出当`valid_targets=x86`时Paddle-Lite支持的所有OP:

![opt_print_supportedops](https://paddlelite-data.bj.bcebos.com/doc_images/5.png)

## 其他功能:合并x2paddle和opt的一键脚本

**背景**:如果想用Paddle-Lite运行第三方来源(tensorflow、caffe、onnx)模型,一般需要经过两次转化。即使用x2paddle工具将第三方模型转化为PaddlePaddle格式,再使用opt将PaddlePaddle模型转化为Padde-Lite可支持格式。
为了简化这一过程,我们提供一键脚本,将x2paddle转化和opt转化合并:

133
**一键转化脚本**[auto_transform.sh](https://github.com/PaddlePaddle/Paddle-Lite/blob/release/v2.3/lite/tools/auto_transform.sh)
134 135


136
**环境要求**:使用`auto_transform.sh`脚本转化第三方模型时,需要先安装x2paddle环境,请参考[x2paddle环境安装方法](https://github.com/PaddlePaddle/X2Paddle#环境依赖) 安装x2paddle和x2paddle依赖项(tensorflow、caffe等)。
137 138 139

**使用方法**

140
(1)打印帮助帮助信息:` sh ./auto_transform.sh`
141 142 143 144 145 146 147 148 149

(2)转化模型方法

```bash
USAGE:
    auto_transform.sh combines the function of x2paddle and opt, it can 
    tranform model from tensorflow/caffe/onnx form into paddle-lite naive-buffer form.
----------------------------------------
example:
150
    sh ./auto_transform.sh --framework=tensorflow --model=tf_model.pb --optimize_out=opt_model_result
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
----------------------------------------
Arguments about x2paddle:
    --framework=(tensorflow|caffe|onnx);
    --model='model file for tensorflow or onnx';
    --prototxt='proto file for caffe' --weight='weight file for caffe'
 For TensorFlow:
   --framework=tensorflow --model=tf_model.pb

 For Caffe:
   --framework=caffe --prototxt=deploy.prototxt --weight=deploy.caffemodel

 For ONNX
   --framework=onnx --model=onnx_model.onnx

Arguments about opt:
    --valid_targets=(arm|opencl|x86|npu|xpu); valid targets on Paddle-Lite.
    --fluid_save_dir='path to outputed model after x2paddle'
    --optimize_out='path to outputed Paddle-Lite model'
----------------------------------------
```