conv_op.cc 3.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/conv_op.h"
16
#include <algorithm>
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
#include <vector>
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool ConvOpLite::CheckShape() const {
  CHECK_OR_FALSE(param_.x);
  CHECK_OR_FALSE(param_.output);
  CHECK_OR_FALSE(param_.filter);
  // bias is optional.

  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

  CHECK_OR_FALSE(in_dims.size() == 4 || in_dims.size() == 5);

  CHECK_EQ_OR_FALSE(in_dims.size(), filter_dims.size());
  CHECK_OR_FALSE(in_dims.size() - param_.strides.size() == 2U);
  CHECK_EQ_OR_FALSE(filter_dims.size(), 4UL);

  return true;
}

inline int ConvOutputSize(
    int input_size, int filter_size, int dilation, int padding, int stride) {
  const int dkernel = dilation * (filter_size - 1) + 1;
  int output_size = (input_size + 2 * padding - dkernel) / stride + 1;
Z
Zhaolong Xing 已提交
46
  // CHECK_GT_OR_FALSE(output_size, 0);
Y
Yan Chunwei 已提交
47 48 49 50

  return output_size;
}

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
inline void UpdatePaddingAndDilation(std::vector<int>* paddings,
                                     std::vector<int>* dilations,
                                     const std::vector<int>& strides,
                                     const std::string padding_algorithm,
                                     const lite::DDim data_dims,
                                     const lite::DDim& ksize) {
  // when padding_desc is "VALID" or "SAME"
  if (padding_algorithm == "SAME") {
    for (size_t i = 0; i < strides.size(); ++i) {
      int out_size = (data_dims[i + 2] + strides[i] - 1) / strides[i];
      int pad_sum =
          std::max((out_size - 1) * strides[i] + ksize[i] - data_dims[i + 2],
                   (int64_t)0);
      // pad
      *(paddings->begin() + i) = pad_sum / 2;
      // dilation
      *(dilations->begin() + i) = 1;
    }
  } else if (padding_algorithm == "VALID") {
    for (auto& it : *paddings) {
      it = 0;
    }
  }
}

Y
Yan Chunwei 已提交
76 77 78 79
bool ConvOpLite::InferShape() const {
  const auto in_dims = param_.x->dims();
  const auto filter_dims = param_.filter->dims();

80 81 82 83 84 85
  UpdatePaddingAndDilation(&param_.paddings,
                           &param_.dilations,
                           param_.strides,
                           padding_algorithm_,
                           in_dims,
                           filter_dims);
Y
Yan Chunwei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[0]});
  for (size_t i = 0; i < param_.strides.size(); ++i) {
    output_shape.push_back(ConvOutputSize(in_dims[i + 2],
                                          filter_dims[i + 2],
                                          param_.dilations[i],
                                          param_.paddings[i],
                                          param_.strides[i]));
  }

  // Set output dims
  param_.output->Resize(lite::DDim(output_shape));

  // share LoD
  // param_.output->set_lod(param_.x->lod());
  return true;
}

}  // namespace operators
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_OP(conv2d, paddle::lite::operators::ConvOpLite);
REGISTER_LITE_OP(depthwise_conv2d, paddle::lite::operators::ConvOpLite);