prior_box_kernel.cpp 5.3 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
E
eclipsess 已提交
14

L
liuruilong 已提交
15 16
#ifdef PRIORBOX_OP

E
eclipsess 已提交
17 18 19 20 21 22 23 24 25 26 27 28
#include "operators/kernel/prior_box_kernel.h"

namespace paddle_mobile {
namespace operators {

template <typename T>
struct ClipFunctor {
  inline T operator()(T in) const {
    return std::min<T>(std::max<T>(in, 0.), 1.);
  }
};

L
liuruilong 已提交
29
template <>
E
eclipsess 已提交
30
bool PriorBoxKernel<CPU, float>::Init(PriorBoxParam *param) const {
L
liuruilong 已提交
31 32 33
  return true;
}

E
eclipsess 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
template <>
void PriorBoxKernel<CPU, float>::Compute(const PriorBoxParam &param) const {
  const auto *input_ = param.Input();
  const auto &input_dims = input_->dims();

  const auto *input_image = param.InputImage();
  const auto &input_image_dims = input_image->dims();

  const auto &min_sizes = param.MinSizes();
  const auto &max_sizes = param.MaxSizes();
  const auto &variances = param.Variances();
  const auto &input_aspect_ratio = param.AspectRatios();
  const bool &flip = param.Flip();
  const bool &clip = param.Clip();
  const float &step_w = param.StepW();
  const float &step_h = param.StepH();
  const float &offset = param.Offset();

  Tensor *output_boxes = param.OutputBoxes();
  auto output_boxes_dataptr = output_boxes->mutable_data<float>();
  Tensor *output_variances = param.OutputVariances();
  auto output_variances_dataptr = output_variances->mutable_data<float>();

  std::vector<float> aspect_ratios;
  ExpandAspectRatios(input_aspect_ratio, flip, &aspect_ratios);

  auto img_width = input_image_dims[3];
  auto img_height = input_image_dims[2];

  auto feature_width = input_dims[3];
  auto feature_height = input_dims[2];

  auto stride0 = output_boxes->dims()[1] * output_boxes->dims()[2] *
                 output_boxes->dims()[3];
  auto stride1 = output_boxes->dims()[2] * output_boxes->dims()[3];
  auto stride2 = output_boxes->dims()[3];

  float step_width, step_height;
  /// 300 / 19
  if (step_w == 0 || step_h == 0) {
    step_width = static_cast<float>(img_width) / feature_width;
    step_height = static_cast<float>(img_height) / feature_height;
  } else {
    step_width = step_w;
    step_height = step_h;
  }

  int num_priors = aspect_ratios.size() * min_sizes.size();
  if (!max_sizes.empty()) {
    num_priors += max_sizes.size();
  }

  for (int h = 0; h < feature_height; ++h) {
    for (int w = 0; w < feature_width; ++w) {
      /// map origin image
      float center_x = (w + offset) * step_width;
      float center_y = (h + offset) * step_height;
      float box_width, box_height;
      int idx = 0;
      for (size_t s = 0; s < min_sizes.size(); ++s) {
        auto min_size = min_sizes[s];
        // priors with different aspect ratios
        for (float ar : aspect_ratios) {
          box_width = min_size * sqrt(ar) / 2.;
          box_height = min_size / sqrt(ar) / 2.;
          /// box_width/2 , / img_width 为了得到feature map 相对于
          /// 原图的归一化位置的比例。
          output_boxes_dataptr[h * stride0 + w * stride1 + idx * stride2 + 0] =
              (center_x - box_width) / img_width;
          output_boxes_dataptr[h * stride0 + w * stride1 + idx * stride2 + 1] =
              (center_y - box_height) / img_height;
          output_boxes_dataptr[h * stride0 + w * stride1 + idx * stride2 + 2] =
              (center_x + box_width) / img_width;
          output_boxes_dataptr[h * stride0 + w * stride1 + idx * stride2 + 3] =
              (center_y + box_height) / img_height;
          idx++;
        }
        if (!max_sizes.empty()) {
          auto max_size = max_sizes[s];
          // square prior with size sqrt(minSize * maxSize)
          box_width = box_height = sqrt(min_size * max_size) / 2.;
          output_boxes_dataptr[h * stride0 + w * stride1 + idx * stride2 + 0] =
              (center_x - box_width) / img_width;
          output_boxes_dataptr[h * stride0 + w * stride1 + idx * stride2 + 1] =
              (center_y - box_height) / img_height;
          output_boxes_dataptr[h * stride0 + w * stride1 + idx * stride2 + 2] =
              (center_x + box_width) / img_width;
          output_boxes_dataptr[h * stride0 + w * stride1 + idx * stride2 + 3] =
              (center_y + box_height) / img_height;
          idx++;
        }
      }
    }
  }
  if (clip) {
    math::Transform trans;
    ClipFunctor<float> clip_func;
    trans(output_boxes_dataptr, output_boxes_dataptr + output_boxes->numel(),
          output_boxes_dataptr, clip_func);
  }

E
eclipsess 已提交
135 136 137
  if ((variances.size() != 4)) {
    LOG(kLOG_ERROR) << " variances.size() must be 4.";
  }
E
eclipsess 已提交
138

E
eclipsess 已提交
139
  int64_t box_num = feature_height * feature_width * num_priors;
E
eclipsess 已提交
140 141 142 143 144 145 146 147 148 149 150

  for (int i = 0; i < box_num; i++) {
    output_variances_dataptr[4 * i] = variances[0];
    output_variances_dataptr[4 * i + 1] = variances[1];
    output_variances_dataptr[4 * i + 2] = variances[2];
    output_variances_dataptr[4 * i + 3] = variances[3];
  }
}

}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
151 152

#endif