batch_norm_op.cc 4.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/npu/bridges/graph.h"
Z
zhupengyang 已提交
16
#include "lite/kernels/npu/bridges/registry.h"
17
#include "lite/kernels/npu/bridges/utility.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
Y
Yan Chunwei 已提交
22 23
namespace npu {

24
int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27 28
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
29
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[NPU] Converting " + op_type + "...";
Y
Yan Chunwei 已提交
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto scale_name = op_info->Input("Scale").front();
  auto scale_type = kernel->GetInputDeclType("Scale");
  CHECK(scale_type->precision() == PRECISION(kFloat));
  CHECK(scale_type->layout() == DATALAYOUT(kNCHW));
  auto scale = scope->FindMutableTensor(scale_name);
  auto bias_name = op_info->Input("Bias").front();
  auto bias_type = kernel->GetInputDeclType("Bias");
  CHECK(bias_type->precision() == PRECISION(kFloat));
  CHECK(bias_type->layout() == DATALAYOUT(kNCHW));
  auto bias = scope->FindMutableTensor(bias_name);
  auto mean_name = op_info->Input("Mean").front();
  auto mean_type = kernel->GetInputDeclType("Mean");
  CHECK(mean_type->precision() == PRECISION(kFloat));
  CHECK(mean_type->layout() == DATALAYOUT(kNCHW));
  auto mean = scope->FindMutableTensor(mean_name);
  auto variance_name = op_info->Input("Variance").front();
  auto variance_type = kernel->GetInputDeclType("Variance");
  CHECK(variance_type->precision() == PRECISION(kFloat));
  CHECK(variance_type->layout() == DATALAYOUT(kNCHW));
  auto variance = scope->FindMutableTensor(variance_name);
  auto y_name = op_info->Output("Y").front();
  auto y_type = kernel->GetOutputDeclType("Y");
  CHECK(y_type->precision() == PRECISION(kFloat));
  CHECK(y_type->layout() == DATALAYOUT(kNCHW));
64 65 66 67
  float momentum = op_info->GetAttr<float>("momentum");
  float epsilon = op_info->GetAttr<float>("epsilon");
  int mode = 1;  // bnScale, bnBias tensor dims are 1xCx1x1
  bool use_global_stats = op_info->GetAttr<bool>("use_global_stats");
Y
Yan Chunwei 已提交
68

69
  // X node
70 71 72
  std::shared_ptr<Node> x_node = nullptr;
  if (graph->Has(x_name)) {
    x_node = graph->Get(x_name);
73
  } else {
74
    x_node = graph->Add(x_name, *x);
75 76 77
  }

  // Scale, Bias, Mean, Variance node
78 79 80 81
  auto scale_node = graph->Add(scale_name, *scale);
  auto bias_node = graph->Add(bias_name, *bias);
  auto mean_node = graph->Add(mean_name, *mean);
  auto variance_node = graph->Add(variance_name, *variance);
82 83

  // Batch Norm node
84 85 86 87 88 89 90 91 92 93 94
  auto batch_norm_node = graph->Add<ge::op::BatchNormExt2>(y_name);
  auto batch_norm_op = batch_norm_node->data<ge::op::BatchNormExt2>();
  batch_norm_op->set_input_x(*x_node->data());
  batch_norm_op->set_input_scale(*scale_node->data());
  batch_norm_op->set_input_offset(*bias_node->data());
  batch_norm_op->set_input_mean(*mean_node->data());
  batch_norm_op->set_input_variance(*variance_node->data());
  batch_norm_op->set_attr_momentum(momentum);
  batch_norm_op->set_attr_epsilon(epsilon);
  batch_norm_op->set_attr_mode(mode);
  batch_norm_op->set_attr_use_global_stats(use_global_stats);
95
  return SUCCESS;
Y
Yan Chunwei 已提交
96 97 98
}

}  // namespace npu
99
}  // namespace subgraph
Y
Yan Chunwei 已提交
100 101 102
}  // namespace lite
}  // namespace paddle

103 104
REGISTER_SUBGRAPH_BRIDGE(batch_norm,
                         kNPU,
105
                         paddle::lite::subgraph::npu::BatchNormConverter);