batch_norm_op.cc 4.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "lite/kernels/npu/bridges/graph.h"
Z
zhupengyang 已提交
16
#include "lite/kernels/npu/bridges/registry.h"
17
#include "lite/kernels/npu/bridges/utility.h"
Y
Yan Chunwei 已提交
18 19 20

namespace paddle {
namespace lite {
21
namespace subgraph {
Y
Yan Chunwei 已提交
22 23
namespace npu {

24
int BatchNormConverter(void* ctx, OpLite* op, KernelBase* kernel) {
25 26 27 28
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
29
  auto op_type = op_info->Type();
30 31
  auto scope = op->scope();
  VLOG(3) << "[NPU] Converting " + op_type + "...";
Y
Yan Chunwei 已提交
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
  // Get input and output vars and op attributes
  auto x_name = op_info->Input("X").front();
  auto x_type = kernel->GetInputDeclType("X");
  CHECK(x_type->precision() == PRECISION(kFloat));
  CHECK(x_type->layout() == DATALAYOUT(kNCHW));
  auto x = scope->FindMutableTensor(x_name);
  auto x_dims = x->dims();
  auto scale_name = op_info->Input("Scale").front();
  auto scale_type = kernel->GetInputDeclType("Scale");
  CHECK(scale_type->precision() == PRECISION(kFloat));
  CHECK(scale_type->layout() == DATALAYOUT(kNCHW));
  auto scale = scope->FindMutableTensor(scale_name);
  auto bias_name = op_info->Input("Bias").front();
  auto bias_type = kernel->GetInputDeclType("Bias");
  CHECK(bias_type->precision() == PRECISION(kFloat));
  CHECK(bias_type->layout() == DATALAYOUT(kNCHW));
  auto bias = scope->FindMutableTensor(bias_name);
  auto mean_name = op_info->Input("Mean").front();
  auto mean_type = kernel->GetInputDeclType("Mean");
  CHECK(mean_type->precision() == PRECISION(kFloat));
  CHECK(mean_type->layout() == DATALAYOUT(kNCHW));
  auto mean = scope->FindMutableTensor(mean_name);
  auto variance_name = op_info->Input("Variance").front();
  auto variance_type = kernel->GetInputDeclType("Variance");
  CHECK(variance_type->precision() == PRECISION(kFloat));
  CHECK(variance_type->layout() == DATALAYOUT(kNCHW));
  auto variance = scope->FindMutableTensor(variance_name);
  auto y_name = op_info->Output("Y").front();
  auto y_type = kernel->GetOutputDeclType("Y");
  CHECK(y_type->precision() == PRECISION(kFloat));
  CHECK(y_type->layout() == DATALAYOUT(kNCHW));
64 65 66 67
  float momentum = op_info->GetAttr<float>("momentum");
  float epsilon = op_info->GetAttr<float>("epsilon");
  int mode = 1;  // bnScale, bnBias tensor dims are 1xCx1x1
  bool use_global_stats = op_info->GetAttr<bool>("use_global_stats");
Y
Yan Chunwei 已提交
68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  // X node
  std::shared_ptr<ge::Operator> x_node = nullptr;
  if (graph->HasNode(x_name)) {
    x_node = graph->GetNode(x_name);
  } else {
    x_node = graph->AddNode(x_name, x_dims);
  }

  // Scale, Bias, Mean, Variance node
  auto scale_const_node = graph->AddNode(scale_name, *scale);
  auto bias_const_node = graph->AddNode(bias_name, *bias);
  auto mean_const_node = graph->AddNode(mean_name, *mean);
  auto variance_const_node = graph->AddNode(variance_name, *variance);

  // Batch Norm node
  auto batch_norm_node = graph->AddNode<ge::op::BatchNormExt2>(y_name);
  batch_norm_node->set_input_x(*x_node);
86 87 88 89 90 91 92 93 94
  batch_norm_node->set_input_scale(*scale_const_node);
  batch_norm_node->set_input_offset(*bias_const_node);
  batch_norm_node->set_input_mean(*mean_const_node);
  batch_norm_node->set_input_variance(*variance_const_node);
  batch_norm_node->set_attr_momentum(momentum);
  batch_norm_node->set_attr_epsilon(epsilon);
  batch_norm_node->set_attr_mode(mode);
  batch_norm_node->set_attr_use_global_stats(use_global_stats);
  return SUCCESS;
Y
Yan Chunwei 已提交
95 96 97
}

}  // namespace npu
98
}  // namespace subgraph
Y
Yan Chunwei 已提交
99 100 101
}  // namespace lite
}  // namespace paddle

102 103 104
REGISTER_SUBGRAPH_BRIDGE(NPU,
                         batch_norm,
                         paddle::lite::subgraph::npu::BatchNormConverter);