io.cpp 13.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

L
liuruilong 已提交
15
#include "io.h"
朔-望's avatar
朔-望 已提交
16
#include <fstream>
L
liuruilong 已提交
17
#include <vector>
朔-望's avatar
朔-望 已提交
18

L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program_desc.h"
L
liuruilong 已提交
25 26 27
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
L
liuruilong 已提交
28

朔-望's avatar
朔-望 已提交
29 30
namespace paddle_mobile {

朔-望's avatar
朔-望 已提交
31
void ReadBinaryFile(const std::string &filename, std::string *contents) {
32
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
L
liuruilong 已提交
33 34
  PADDLE_MOBILE_ENFORCE(fin.is_open(), "open file: %s failed",
                        filename.c_str());
35 36 37 38 39 40
  fin.seekg(0, std::ios::end);
  contents->clear();
  contents->resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
朔-望's avatar
朔-望 已提交
41 42
}

L
liuruilong 已提交
43
static size_t ReadBuffer(const char *file_name, uint8_t **out) {
L
liuruilong 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, "open failed !");

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = (uint8_t *)malloc(size);

  size_t cur_len = 0;
  size_t nread;
L
liuruilong 已提交
59
  while ((nread = fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
L
liuruilong 已提交
60 61 62 63 64 65
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

朔-望's avatar
朔-望 已提交
66
template <typename Dtype, Precision P>
L
liuruilong 已提交
67 68
void Loader<Dtype, P>::LoadVar(framework::Variable *variable,
                               const framework::VarDesc &var_desc,
朔-望's avatar
朔-望 已提交
69
                               const std::string &file_path) {
L
liuruilong 已提交
70
  auto tensor = variable->GetMutable<framework::LoDTensor>();
71
  std::ifstream is(file_path);
L
liuruilong 已提交
72 73
  PADDLE_MOBILE_ENFORCE(is.is_open(), "open file: %s failed",
                        file_path.c_str());
L
liuruilong 已提交
74

朔-望's avatar
朔-望 已提交
75 76
  std::fpos<mbstate_t> pos;
  pos = is.tellg();  // save   current   position
77
  is.seekg(0, std::ios::end);
朔-望's avatar
朔-望 已提交
78
  is.seekg(pos);  // restore   saved   position
79 80 81 82 83 84 85 86 87 88 89 90

  // 1. version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));

  // 2 Lod information
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
朔-望's avatar
朔-望 已提交
91
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
92 93 94
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
朔-望's avatar
朔-望 已提交
95 96
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
朔-望's avatar
朔-望 已提交
97
    }
98 99 100 101 102 103 104 105 106 107 108 109 110
    lod[i] = tmp;
  }

  // 3. tensor version
  uint32_t tensor_version;
  is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));

  // 4. tensor desc
  int32_t size;
  is.read(reinterpret_cast<char *>(&size), sizeof(size));
  std::unique_ptr<char[]> buf(new char[size]);
  is.read(reinterpret_cast<char *>(buf.get()), size);

L
liuruilong 已提交
111 112
  const framework::TensorDesc &desc = var_desc.Tensor_desc();

L
liuruilong 已提交
113
  PaddleMobile__Framework__Proto__VarType__TensorDesc *tensor_desc = NULL;
L
liuruilong 已提交
114 115 116
  //  void *v;
  //  PaddleMobile__Framework__Proto__VarType__TensorDesc_Closure()(tensor_desc,
  //  buf.get());
L
liuruilong 已提交
117

L
liuruilong 已提交
118 119
  //  DLOG << "PaddleMobile__Framework__Proto__VarType__TensorDesc_Closure- " <<
  //  tensor_desc;
L
liuruilong 已提交
120

L
liuruilong 已提交
121 122 123 124 125 126
  //  framework::TensorDesc &tensor_desc = variable->
  //  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  //  uint8_t *proto_buf = NULL;
  //  size_t read_size = ReadBuffer(file_path.c_str(), &proto_buf);
  //  c_program = paddle_mobile__framework__proto__program_desc__unpack(NULL,
  //  read_size, buf);
L
liuruilong 已提交
127

L
liuruilong 已提交
128
  //  paddle_mobile__framework__proto__var_type__tensor_desc__init()
129 130

  int memory_size = 1;
L
liuruilong 已提交
131
  for (auto l : desc.Dims()) {
朔-望's avatar
朔-望 已提交
132
    memory_size *= l;
133 134
  }

L
liuruilong 已提交
135
  tensor->Resize(framework::make_ddim(desc.Dims()));
136

朔-望's avatar
朔-望 已提交
137
  void *memory = tensor;
138
  int type_size = 0;
L
liuruilong 已提交
139 140
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
朔-望's avatar
朔-望 已提交
141 142
      type_size = 2;
      break;
L
liuruilong 已提交
143
    case framework::VARTYPE_TYPE_FP32:
朔-望's avatar
朔-望 已提交
144 145 146
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
L
liuruilong 已提交
147
    case framework::VARTYPE_TYPE_FP64:
朔-望's avatar
朔-望 已提交
148 149
      type_size = 8;
      break;
L
liuruilong 已提交
150
    case framework::VARTYPE_TYPE_INT32:
朔-望's avatar
朔-望 已提交
151 152
      type_size = 4;
      break;
L
liuruilong 已提交
153
    case framework::VARTYPE_TYPE_INT64:
朔-望's avatar
朔-望 已提交
154 155
      type_size = 8;
      break;
L
liuruilong 已提交
156
    case framework::VARTYPE_TYPE_BOOL:
朔-望's avatar
朔-望 已提交
157 158 159 160
      type_size = 1;
      break;
    default:
      break;
161 162 163 164
  }

  is.read(static_cast<char *>(memory), memory_size * type_size);
  is.close();
朔-望's avatar
朔-望 已提交
165
}
朔-望's avatar
朔-望 已提交
166 167

template <typename Dtype, Precision P>
朔-望's avatar
朔-望 已提交
168 169
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &dirname) {
170
  std::string model_filename = dirname + "/__model__";
L
liuruilong 已提交
171 172 173 174 175 176
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

L
liuruilong 已提交
177 178
  c_program = paddle_mobile__framework__proto__program_desc__unpack(
      NULL, read_size, buf);
L
liuruilong 已提交
179 180 181 182

  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");

  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
183 184

  std::shared_ptr<framework::ProgramDesc> originProgramDesc =
L
liuruilong 已提交
185
      std::make_shared<framework::ProgramDesc>(c_program);
186 187

  framework::Program<Dtype, P> program;
L
liuruilong 已提交
188
  program.model_path = dirname;
189 190 191 192 193
  program.originProgram = originProgramDesc;

  std::shared_ptr<framework::Scope> scope =
      std::make_shared<framework::Scope>();
  program.scope = scope;
E
eclipsess 已提交
194 195 196 197 198
  originProgramDesc->Block(0);

  for (const auto &block : originProgramDesc->Blocks()) {
    for (int i = 0; i < block->Vars().size(); ++i) {
      std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
L
liuruilong 已提交
199
      //      DLOG << "var name-- " << var_desc->Name();
E
eclipsess 已提交
200
      auto var = scope->Var(var_desc->Name());
L
liuruilong 已提交
201 202

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
E
eclipsess 已提交
203
        if (var_desc->Persistable() &&
L
liuruilong 已提交
204 205
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
L
liuruilong 已提交
206
          //          DLOG << "to load var ";
L
liuruilong 已提交
207
          LoadVar(var, *var_desc, dirname + "/" + var_desc->Name());
L
liuruilong 已提交
208 209 210 211 212 213
        } else {
          auto dim = var_desc->Tensor_desc().Dims();
          PADDLE_MOBILE_ENFORCE(dim.size() > 0, "dim size is 0");
          dim[0] = 1;
          auto tensor = var->GetMutable<framework::LoDTensor>();
          tensor->Resize(framework::make_ddim(dim));
E
eclipsess 已提交
214 215 216 217 218 219
        }
      } else {
        // TODO(codeWorm): some.
      }
    }
  }
220

L
liuruilong 已提交
221
  originProgramDesc->Description("program: ");
朔-望's avatar
朔-望 已提交
222

L
liuruilong 已提交
223
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
224
  return program;
朔-望's avatar
朔-望 已提交
225
}
朔-望's avatar
朔-望 已提交
226

朔-望's avatar
朔-望 已提交
227
template class Loader<CPU, Precision::FP32>;
朔-望's avatar
朔-望 已提交
228

L
liuruilong 已提交
229 230 231 232 233 234 235 236 237 238
#pragma mark - executor

template <typename Dtype, Precision P>
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p) : program_(p) {
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }

L
liuruilong 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
      //              auto op_base =
      //              framework::OpRegistry<Dtype>::CreateOp(op->Type(),
      //                      op->GetInputs(), op->GetOutputs(),
      //                      op->GetAttrMap(), program_.scope);
      //              op_base->InferShape();
    }
  }
  InitMemory();
L
liuruilong 已提交
254 255 256
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
257 258
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
                                    framework::LoDTensor *tensor,
L
liuruilong 已提交
259
                                    const std::string &file_path) {
L
liuruilong 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
  std::ifstream is(file_path);
  PADDLE_MOBILE_ENFORCE(is.is_open(), "open file: %s failed",
                        file_path.c_str());
  std::fpos<mbstate_t> pos;
  pos = is.tellg();  // save   current   position
  is.seekg(0, std::ios::end);
  is.seekg(pos);  // restore   saved   position

  // 1. version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));

  // 2 Lod information
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
  uint32_t tensor_version;
  is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));

  // 4. tensor desc
  int32_t size;
  is.read(reinterpret_cast<char *>(&size), sizeof(size));
  std::unique_ptr<char[]> buf(new char[size]);
  is.read(reinterpret_cast<char *>(buf.get()), size);

L
liuruilong 已提交
299 300
  const framework::TensorDesc &desc = var_desc.Tensor_desc();

L
liuruilong 已提交
301
  int memory_size = 1;
L
liuruilong 已提交
302
  for (auto l : desc.Dims()) {
L
liuruilong 已提交
303 304 305
    memory_size *= l;
  }

L
liuruilong 已提交
306
  tensor->Resize(framework::make_ddim(desc.Dims()));
L
liuruilong 已提交
307 308 309

  void *memory = tensor;
  int type_size = 0;
L
liuruilong 已提交
310 311
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
L
liuruilong 已提交
312 313
      type_size = 2;
      break;
L
liuruilong 已提交
314
    case framework::VARTYPE_TYPE_FP32:
L
liuruilong 已提交
315 316 317
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
L
liuruilong 已提交
318
    case framework::VARTYPE_TYPE_FP64:
L
liuruilong 已提交
319 320
      type_size = 8;
      break;
L
liuruilong 已提交
321
    case framework::VARTYPE_TYPE_INT32:
L
liuruilong 已提交
322 323
      type_size = 4;
      break;
L
liuruilong 已提交
324
    case framework::VARTYPE_TYPE_INT64:
L
liuruilong 已提交
325 326
      type_size = 8;
      break;
L
liuruilong 已提交
327
    case framework::VARTYPE_TYPE_BOOL:
L
liuruilong 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
      type_size = 1;
      break;
    default:
      break;
  }

  is.read(static_cast<char *>(memory), memory_size * type_size);
  is.close();
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
L
liuruilong 已提交
343 344
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
345 346
        LoadMemory(*var_desc, tensor,
                   program_.model_path + "/" + var_desc->Name());
L
liuruilong 已提交
347
      } else {
L
liuruilong 已提交
348
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
L
liuruilong 已提交
349 350 351 352
          auto tensor = var->template GetMutable<framework::Tensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
L
liuruilong 已提交
353 354 355 356 357
    }
  }
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
358 359
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::predict(
    framework::Tensor &t) {
L
liuruilong 已提交
360 361 362 363 364 365 366
  // feed
  auto scope = program_.scope;
  framework::Variable *g_feed_value = scope->Var("pixel");
  auto tensor = g_feed_value->GetMutable<framework::Tensor>();
  tensor->ShareDataWith(t);

  framework::Variable *con_output = scope->Var("conv2d_0.tmp_0");
L
liuruilong 已提交
367 368
  framework::Tensor *output_tensor =
      con_output->GetMutable<framework::Tensor>();
L
liuruilong 已提交
369 370 371 372 373
  output_tensor->mutable_data<float>({1, 16, 32, 32});
  //  std::cout << typeid(output_tensor).name() << std::endl;
  //  std::cout << "output_tensor dims: " << output_tensor->dims() <<
  //  std::endl;

L
liuruilong 已提交
374 375
  std::shared_ptr<framework::Tensor> out_tensor =
      std::make_shared<framework::LoDTensor>();
L
liuruilong 已提交
376 377 378 379 380 381 382 383
  out_tensor.reset(output_tensor);

  predict(t, 0);
  return out_tensor;
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::predict(const framework::Tensor &t, int block_id) {
L
liuruilong 已提交
384 385 386
  //  framework::Variable *g_feed_value = program_.scope->Var("feed");
  //  auto feed_tensor = g_feed_value->GetMutable<framework::Tensor>();
  //  feed_tensor->ShareDataWith(t);
L
liuruilong 已提交
387 388

  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
389
      to_predict_program_->Block(block_id);
L
liuruilong 已提交
390 391 392 393 394 395 396
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
    op->Run();
  }
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
397 398
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::predict(
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
L
liuruilong 已提交
399 400 401 402 403
  DLOG << "start predict: ";

  framework::Tensor tensor;
  auto ddim = framework::make_ddim(dims);

L
liuruilong 已提交
404
  auto input_ptr = tensor.mutable_data<Ptype>(ddim);
L
liuruilong 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418
  for (int i = 0; i < input.size(); ++i) {
    input_ptr[i] = input[i];
  }

  predict(tensor, 0);

  framework::Variable *g_feed_value = program_.scope->Var("col");
  auto feed_tensor = g_feed_value->GetMutable<framework::Tensor>();

  return {};
}

template class Executor<CPU, Precision::FP32>;

朔-望's avatar
朔-望 已提交
419
}  // namespace paddle_mobile