io.cpp 12.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

L
liuruilong 已提交
15
#include "io.h"
朔-望's avatar
朔-望 已提交
16
#include <fstream>
L
liuruilong 已提交
17
#include <vector>
朔-望's avatar
朔-望 已提交
18

L
liuruilong 已提交
19
#include "common/log.h"
L
liuruilong 已提交
20
#include "common/enforce.h"
L
liuruilong 已提交
21 22
#include "framework/scope.h"
#include "framework/tensor.h"
L
liuruilong 已提交
23 24 25 26 27 28
#include "framework/operator.h"
#include "framework/lod_tensor.h"
#include "framework/framework.pb.h"
#include "framework/framework.pb-c.h"
#include "framework/program/var_desc.h"
#include "framework/program/program_desc.h"
L
liuruilong 已提交
29

朔-望's avatar
朔-望 已提交
30 31
namespace paddle_mobile {

朔-望's avatar
朔-望 已提交
32
void ReadBinaryFile(const std::string &filename, std::string *contents) {
33
  std::ifstream fin(filename, std::ios::in | std::ios::binary);
L
liuruilong 已提交
34 35
  PADDLE_MOBILE_ENFORCE(fin.is_open(), "open file: %s failed",
                        filename.c_str());
36 37 38 39 40 41
  fin.seekg(0, std::ios::end);
  contents->clear();
  contents->resize(fin.tellg());
  fin.seekg(0, std::ios::beg);
  fin.read(&(contents->at(0)), contents->size());
  fin.close();
朔-望's avatar
朔-望 已提交
42 43
}

L
liuruilong 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
static size_t ReadBuffer (const char *file_name, uint8_t **out) {
  printf("%s \n", file_name);
  FILE *fp;
  fp = fopen(file_name, "rb");
  PADDLE_MOBILE_ENFORCE(fp != NULL, "open failed !");

  fseek(fp, 0, SEEK_END);
  size_t size = ftell(fp);
  rewind(fp);

  DLOG << "model size: " << size;

  *out = (uint8_t *)malloc(size);

  size_t cur_len = 0;
  size_t nread;
  while ((nread=fread(*out + cur_len, 1, size - cur_len, fp)) != 0) {
    cur_len += nread;
  }
  fclose(fp);
  return cur_len;
}

朔-望's avatar
朔-望 已提交
67
template <typename Dtype, Precision P>
L
liuruilong 已提交
68
void Loader<Dtype, P>::LoadVar(framework::Variable *variable, const framework::VarDesc &var_desc,
朔-望's avatar
朔-望 已提交
69
                               const std::string &file_path) {
L
liuruilong 已提交
70
  auto tensor = variable->GetMutable<framework::LoDTensor>();
71
  std::ifstream is(file_path);
L
liuruilong 已提交
72 73
  PADDLE_MOBILE_ENFORCE(is.is_open(), "open file: %s failed",
                        file_path.c_str());
L
liuruilong 已提交
74

朔-望's avatar
朔-望 已提交
75 76
  std::fpos<mbstate_t> pos;
  pos = is.tellg();  // save   current   position
77
  is.seekg(0, std::ios::end);
朔-望's avatar
朔-望 已提交
78
  is.seekg(pos);  // restore   saved   position
79 80 81 82 83 84 85 86 87 88 89 90

  // 1. version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));

  // 2 Lod information
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
朔-望's avatar
朔-望 已提交
91
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
92 93 94
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
朔-望's avatar
朔-望 已提交
95 96
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
朔-望's avatar
朔-望 已提交
97
    }
98 99 100 101 102 103 104 105 106 107 108 109 110
    lod[i] = tmp;
  }

  // 3. tensor version
  uint32_t tensor_version;
  is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));

  // 4. tensor desc
  int32_t size;
  is.read(reinterpret_cast<char *>(&size), sizeof(size));
  std::unique_ptr<char[]> buf(new char[size]);
  is.read(reinterpret_cast<char *>(buf.get()), size);

L
liuruilong 已提交
111 112 113 114 115 116 117 118 119 120
  const framework::TensorDesc &desc = var_desc.Tensor_desc();

//  framework::TensorDesc &tensor_desc = variable->
//  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
//  uint8_t *proto_buf = NULL;
//  size_t read_size = ReadBuffer(file_path.c_str(), &proto_buf);
//  c_program = paddle_mobile__framework__proto__program_desc__unpack(NULL, read_size, buf);

//  paddle_mobile__framework__proto__var_type__tensor_desc__init()

121 122

  int memory_size = 1;
L
liuruilong 已提交
123
  for (auto l : desc.Dims()) {
朔-望's avatar
朔-望 已提交
124
    memory_size *= l;
125 126
  }

L
liuruilong 已提交
127
  tensor->Resize(framework::make_ddim(desc.Dims()));
128

朔-望's avatar
朔-望 已提交
129
  void *memory = tensor;
130
  int type_size = 0;
L
liuruilong 已提交
131 132
  switch (desc.DataType()) {
    case framework::VARTYPE_TYPE_FP16:
朔-望's avatar
朔-望 已提交
133 134
      type_size = 2;
      break;
L
liuruilong 已提交
135
    case framework::VARTYPE_TYPE_FP32:
朔-望's avatar
朔-望 已提交
136 137 138
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
L
liuruilong 已提交
139
    case framework::VARTYPE_TYPE_FP64:
朔-望's avatar
朔-望 已提交
140 141
      type_size = 8;
      break;
L
liuruilong 已提交
142
    case framework::VARTYPE_TYPE_INT32:
朔-望's avatar
朔-望 已提交
143 144
      type_size = 4;
      break;
L
liuruilong 已提交
145
    case framework::VARTYPE_TYPE_INT64:
朔-望's avatar
朔-望 已提交
146 147
      type_size = 8;
      break;
L
liuruilong 已提交
148
    case framework::VARTYPE_TYPE_BOOL:
朔-望's avatar
朔-望 已提交
149 150 151 152
      type_size = 1;
      break;
    default:
      break;
153 154 155 156
  }

  is.read(static_cast<char *>(memory), memory_size * type_size);
  is.close();
朔-望's avatar
朔-望 已提交
157
}
朔-望's avatar
朔-望 已提交
158 159

template <typename Dtype, Precision P>
朔-望's avatar
朔-望 已提交
160 161
const framework::Program<Dtype, P> Loader<Dtype, P>::Load(
    const std::string &dirname) {
162
  std::string model_filename = dirname + "/__model__";
L
liuruilong 已提交
163 164 165 166 167 168 169 170 171 172 173
  PaddleMobile__Framework__Proto__ProgramDesc *c_program;
  uint8_t *buf = NULL;
  size_t read_size = ReadBuffer(model_filename.c_str(), &buf);

  PADDLE_MOBILE_ENFORCE(buf != NULL, "read from __model__ is null");

  c_program = paddle_mobile__framework__proto__program_desc__unpack(NULL, read_size, buf);

  PADDLE_MOBILE_ENFORCE(c_program != NULL, "program is null");

  DLOG << "n_ops: " << (*c_program->blocks)->n_ops;
174 175

  std::shared_ptr<framework::ProgramDesc> originProgramDesc =
L
liuruilong 已提交
176
      std::make_shared<framework::ProgramDesc>(c_program);
177 178

  framework::Program<Dtype, P> program;
L
liuruilong 已提交
179
  program.model_path = dirname;
180 181 182 183 184
  program.originProgram = originProgramDesc;

  std::shared_ptr<framework::Scope> scope =
      std::make_shared<framework::Scope>();
  program.scope = scope;
E
eclipsess 已提交
185 186 187 188 189
  originProgramDesc->Block(0);

  for (const auto &block : originProgramDesc->Blocks()) {
    for (int i = 0; i < block->Vars().size(); ++i) {
      std::shared_ptr<framework::VarDesc> var_desc = block->Vars()[i];
L
liuruilong 已提交
190
//      DLOG << "var name-- " << var_desc->Name();
E
eclipsess 已提交
191
      auto var = scope->Var(var_desc->Name());
L
liuruilong 已提交
192 193

      if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
E
eclipsess 已提交
194
        if (var_desc->Persistable() &&
L
liuruilong 已提交
195 196 197 198
            var_desc->Type() != framework::VARTYPE_TYPE_FEED_MINIBATCH &&
            var_desc->Type() != framework::VARTYPE_TYPE_FETCH_LIST) {
//          DLOG << "to load var ";
          LoadVar(var, *var_desc, dirname + "/" + var_desc->Name());
E
eclipsess 已提交
199
        }
L
liuruilong 已提交
200

E
eclipsess 已提交
201 202 203 204 205
      } else {
        // TODO(codeWorm): some.
      }
    }
  }
206

L
liuruilong 已提交
207
  originProgramDesc->Description("program: ");
朔-望's avatar
朔-望 已提交
208

L
liuruilong 已提交
209
  paddle_mobile__framework__proto__program_desc__free_unpacked(c_program, NULL);
210
  return program;
朔-望's avatar
朔-望 已提交
211
}
朔-望's avatar
朔-望 已提交
212

朔-望's avatar
朔-望 已提交
213
template class Loader<CPU, Precision::FP32>;
朔-望's avatar
朔-望 已提交
214

L
liuruilong 已提交
215 216 217 218 219 220 221 222 223 224
#pragma mark - executor

template <typename Dtype, Precision P>
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p) : program_(p) {
  if (use_optimize_) {
    to_predict_program_ = program_.optimizeProgram;
  } else {
    to_predict_program_ = program_.originProgram;
  }

L
liuruilong 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
  const std::vector<std::shared_ptr<framework::BlockDesc>> blocks =
      to_predict_program_->Blocks();
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
      //              auto op_base =
      //              framework::OpRegistry<Dtype>::CreateOp(op->Type(),
      //                      op->GetInputs(), op->GetOutputs(),
      //                      op->GetAttrMap(), program_.scope);
      //              op_base->InferShape();
    }
  }
  InitMemory();
L
liuruilong 已提交
240 241 242
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
243 244
void Executor<Dtype, P>::LoadMemory(framework::LoDTensor *tensor,
                                    const std::string &file_path) {
L
liuruilong 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
  std::ifstream is(file_path);
  PADDLE_MOBILE_ENFORCE(is.is_open(), "open file: %s failed",
                        file_path.c_str());
  std::fpos<mbstate_t> pos;
  pos = is.tellg();  // save   current   position
  is.seekg(0, std::ios::end);
  is.seekg(pos);  // restore   saved   position

  // 1. version
  uint32_t version;
  is.read(reinterpret_cast<char *>(&version), sizeof(version));

  // 2 Lod information
  uint64_t lod_level;
  is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
  auto &lod = *tensor->mutable_lod();
  lod.resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size;
    is.read(reinterpret_cast<char *>(&size), sizeof(size));
    std::vector<size_t> tmp(size / sizeof(size_t));
    is.read(reinterpret_cast<char *>(tmp.data()),
            static_cast<std::streamsize>(size));
    for (auto j : tmp) {
      LOG(kLOG_DEBUG1) << "    lod - " << j;
    }
    lod[i] = tmp;
  }

  // 3. tensor version
  uint32_t tensor_version;
  is.read(reinterpret_cast<char *>(&tensor_version), sizeof(tensor_version));

  // 4. tensor desc
  int32_t size;
  is.read(reinterpret_cast<char *>(&size), sizeof(size));
  std::unique_ptr<char[]> buf(new char[size]);
  is.read(reinterpret_cast<char *>(buf.get()), size);

  framework::proto::VarType::TensorDesc desc;
  desc.ParseFromArray(buf.get(), size);

  int memory_size = 1;
  for (auto l : desc.dims()) {
    memory_size *= l;
  }

  std::vector<int64_t> dims;
  dims.reserve(static_cast<size_t>(desc.dims().size()));
  std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
  tensor->Resize(framework::make_ddim(dims));

  void *memory = tensor;
  int type_size = 0;
  switch (desc.data_type()) {
    case framework::proto::VarType::FP16:
      type_size = 2;
      break;
    case framework::proto::VarType::FP32:
      type_size = 4;
      memory = tensor->mutable_data<float>();
      break;
    case framework::proto::VarType::FP64:
      type_size = 8;
      break;
    case framework::proto::VarType::INT32:
      type_size = 4;
      break;
    case framework::proto::VarType::INT64:
      type_size = 8;
      break;
    case framework::proto::VarType::BOOL:
      type_size = 1;
      break;
    default:
      break;
  }

  is.read(static_cast<char *>(memory), memory_size * type_size);
  is.close();
};

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
L
liuruilong 已提交
332 333 334 335
      if (var_desc->Persistable()) {
        auto tensor = var->template GetMutable<framework::LoDTensor>();
        LoadMemory(tensor, program_.model_path + "/" + var_desc->Name());
      } else {
L
liuruilong 已提交
336
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
L
liuruilong 已提交
337 338 339 340
          auto tensor = var->template GetMutable<framework::Tensor>();
          tensor->template mutable_data<Ptype>();
        }
      }
L
liuruilong 已提交
341 342 343 344 345
    }
  }
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
346 347
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::predict(
    framework::Tensor &t) {
L
liuruilong 已提交
348 349 350 351 352 353 354
  // feed
  auto scope = program_.scope;
  framework::Variable *g_feed_value = scope->Var("pixel");
  auto tensor = g_feed_value->GetMutable<framework::Tensor>();
  tensor->ShareDataWith(t);

  framework::Variable *con_output = scope->Var("conv2d_0.tmp_0");
L
liuruilong 已提交
355 356
  framework::Tensor *output_tensor =
      con_output->GetMutable<framework::Tensor>();
L
liuruilong 已提交
357 358 359 360 361
  output_tensor->mutable_data<float>({1, 16, 32, 32});
  //  std::cout << typeid(output_tensor).name() << std::endl;
  //  std::cout << "output_tensor dims: " << output_tensor->dims() <<
  //  std::endl;

L
liuruilong 已提交
362 363
  std::shared_ptr<framework::Tensor> out_tensor =
      std::make_shared<framework::LoDTensor>();
L
liuruilong 已提交
364 365 366 367 368 369 370 371
  out_tensor.reset(output_tensor);

  predict(t, 0);
  return out_tensor;
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::predict(const framework::Tensor &t, int block_id) {
L
liuruilong 已提交
372 373 374
  //  framework::Variable *g_feed_value = program_.scope->Var("feed");
  //  auto feed_tensor = g_feed_value->GetMutable<framework::Tensor>();
  //  feed_tensor->ShareDataWith(t);
L
liuruilong 已提交
375 376

  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
377
      to_predict_program_->Block(block_id);
L
liuruilong 已提交
378 379 380 381 382 383 384
  for (int j = 0; j < ops_of_block_[*to_predict_block.get()].size(); ++j) {
    auto op = ops_of_block_[*to_predict_block.get()][j];
    op->Run();
  }
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
385 386
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::predict(
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
L
liuruilong 已提交
387 388 389 390 391
  DLOG << "start predict: ";

  framework::Tensor tensor;
  auto ddim = framework::make_ddim(dims);

L
liuruilong 已提交
392
  auto input_ptr = tensor.mutable_data<Ptype>(ddim);
L
liuruilong 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406
  for (int i = 0; i < input.size(); ++i) {
    input_ptr[i] = input[i];
  }

  predict(tensor, 0);

  framework::Variable *g_feed_value = program_.scope->Var("col");
  auto feed_tensor = g_feed_value->GetMutable<framework::Tensor>();

  return {};
}

template class Executor<CPU, Precision::FP32>;

朔-望's avatar
朔-望 已提交
407
}  // namespace paddle_mobile