pool_image_compute.cc 7.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16

17
#include "lite/backends/opencl/cl_half.h"
18
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
19 20
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
21
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
22 23 24
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"
25 26 27 28
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/profiler.h"
#endif
#include "lite/backends/opencl/cl_utility.h"
Y
Yan Chunwei 已提交
29

30 31
#undef LITE_WITH_LOG

Y
Yan Chunwei 已提交
32 33 34 35 36
namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

37
class PoolComputeImage2D : public KernelLite<TARGET(kOpenCL),
38
                                             PRECISION(kFP16),
39
                                             DATALAYOUT(kImageDefault)> {
40 41 42
 public:
  using param_t = operators::PoolParam;

43
  std::string doc() const override { return "Pool using cl::Image2D, kFP16"; }
44

45 46
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
47

48
    kernel_func_name_ += param.pooling_type;
49 50 51 52
    const bool global_pooling = param.global_pooling;
    if (global_pooling) {
      kernel_func_name_ += "_global";
    }
53
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
54 55
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
56
        kernel_func_name_, "image/pool_kernel.cl", build_options_, time_stamp_);
57 58
  }

59 60 61 62 63 64 65 66
#ifdef LITE_WITH_PROFILE
  void SetProfileRuntimeKernelInfo(paddle::lite::profile::OpCharacter* ch) {
    ch->kernel_func_name = kernel_func_name_;
    ch->cl_event =
        event_;  // `event_` defined in `kernel.h`, valid after kernel::Run
  }
#endif

67 68 69 70 71 72 73 74 75
  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    const auto& in_dims = param.x->dims();
    const auto& out_dims = param.output->dims();
    const std::string pooling_type = param.pooling_type;
    const bool global_pooling = param.global_pooling;
    std::vector<int> paddings = *param.paddings;
    std::vector<int> strides = param.strides;
    std::vector<int> ksize = param.ksize;
76

77
#ifdef LITE_WITH_LOG
78 79 80 81
    VLOG(4) << "global_pooling: " << global_pooling;
    VLOG(4) << "pooling_type: " << pooling_type;
    VLOG(4) << "paddings : " << paddings[0] << "  " << paddings[1] << "  "
            << paddings[2] << "  " << paddings[3] << "  ";
82 83
#endif

84 85 86 87 88 89 90
    if (global_pooling) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[2 * i] = 0;
        paddings[2 * i + 1] = 0;
        ksize[i] = static_cast<int>(in_dims[i + 2]);
      }
    }
91

92
#ifdef LITE_WITH_LOG
93 94 95 96 97 98 99 100 101 102 103 104
    VLOG(4) << "in_dims : [" << in_dims.size() << "]" << in_dims[0] << "  "
            << in_dims[1] << "  " << in_dims[2] << "  " << in_dims[3];
    VLOG(4) << "out_dims : [" << out_dims.size() << "]" << out_dims[0] << "  "
            << out_dims[1] << "  " << out_dims[2] << "  " << out_dims[3];
    VLOG(4) << "paddings fixed : " << paddings[0] << "  " << paddings[1] << "  "
            << paddings[2] << "  " << paddings[3] << "  ";
    VLOG(4) << "strides : [" << strides.size() << "]" << strides[0] << "  "
            << strides[1];
    VLOG(4) << "ksize : [" << ksize.size() << "]" << ksize[0] << "  "
            << ksize[1] << "  " << ksize[2] << "  " << ksize[3];
    VLOG(4) << "paddings : [" << paddings.size() << "]" << paddings[0] << "  "
            << paddings[1] << "  " << paddings[2] << "  " << paddings[3];
105 106
#endif

107 108 109 110 111 112 113 114 115
    bool pads_equal =
        (paddings[0] == paddings[1]) && (paddings[2] == paddings[3]);
    if (!pads_equal) {
      LOG(FATAL)
          << "padding requires pad_left == pad_right, pad_top == pad_bottom";
    }
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

116
    auto* x_img = param.x->data<half_t, cl::Image2D>();
117
    //    VLOG(4) << "x_image" << x_img;
118 119

    auto out_image_shape = InitImageDimInfoWith(out_dims);
120
#ifdef LITE_WITH_LOG
121 122
    VLOG(4) << "out_image_shape = " << out_image_shape["width"] << " "
            << out_image_shape["height"];
123
#endif
124
    auto* out_img = param.output->mutable_data<half_t, cl::Image2D>(
125
        out_image_shape["width"], out_image_shape["height"]);
126
    //    VLOG(4) << "out_image" << out_img;
127 128

    STL::stringstream kernel_key;
129
    kernel_key << kernel_func_name_ << build_options_ << time_stamp_;
130 131 132 133 134 135
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int c_block = (out_dims[1] + 3) / 4;
    int w = out_dims[3];
    int nh = out_dims[0] * out_dims[2];
    auto global_work_size = cl::NDRange(c_block, w, nh);
136
#ifdef LITE_WITH_LOG
137 138
    VLOG(4) << "global_work_size : [" << 3 << "]" << c_block << "  " << w
            << "  " << nh << "  ";
139
#endif
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(ksize[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(ksize[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
    CL_CHECK_FATAL(status);

167 168 169 170 171 172 173
    status = EnqueueNDRangeKernel(context,
                                  kernel,
                                  cl::NullRange,
                                  global_work_size,
                                  cl::NullRange,
                                  nullptr,
                                  event_);
174 175 176 177 178
    CL_CHECK_FATAL(status);
  }

 private:
  std::string kernel_func_name_{"pool_"};
179
  std::string build_options_{"-DCL_DTYPE_half"};
180
  std::string time_stamp_{GetTimeStamp()};
181 182
};

Y
Yan Chunwei 已提交
183 184 185 186 187
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

188 189
REGISTER_LITE_KERNEL(pool2d,
                     kOpenCL,
190
                     kFP16,
191
                     kImageDefault,
192 193 194 195
                     paddle::lite::kernels::opencl::PoolComputeImage2D,
                     image2d)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
196
                                      PRECISION(kFP16),
197
                                      DATALAYOUT(kImageDefault))})
198 199
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
200
                                       PRECISION(kFP16),
201
                                       DATALAYOUT(kImageDefault))})
202
    .Finalize();
203
#define LITE_WITH_LOG