pool_image_compute.cc 5.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
16
#include "lite/backends/opencl/cl_include.h"
Y
Yan Chunwei 已提交
17 18
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
19
#include "lite/kernels/opencl/image_helper.h"
Y
Yan Chunwei 已提交
20 21 22 23 24 25 26 27 28
#include "lite/operators/op_params.h"
#include "lite/utils/replace_stl/stream.h"
#include "lite/utils/string.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {

29
class PoolComputeImage2D : public KernelLite<TARGET(kOpenCL),
30
                                             PRECISION(kFP16),
31
                                             DATALAYOUT(kImageDefault)> {
32 33 34
 public:
  using param_t = operators::PoolParam;

35
  std::string doc() const override { return "Pool using cl::Image2D, kFP16"; }
36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
  void PrepareForRun() override {
    const auto& param = *param_.get_mutable<param_t>();
    kernel_func_name_ += param.pooling_type;
    auto& context = ctx_->As<OpenCLContext>();
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/pool_kernel.cl", build_options_);
  }

  void Run() override {
    const auto& param = *param_.get_mutable<param_t>();
    const auto& in_dims = param.x->dims();
    const auto& out_dims = param.output->dims();
    const std::string pooling_type = param.pooling_type;
    const bool global_pooling = param.global_pooling;
    std::vector<int> paddings = *param.paddings;
    std::vector<int> strides = param.strides;
    std::vector<int> ksize = param.ksize;
    if (global_pooling) {
      for (size_t i = 0; i < ksize.size(); ++i) {
        paddings[2 * i] = 0;
        paddings[2 * i + 1] = 0;
        ksize[i] = static_cast<int>(in_dims[i + 2]);
      }
    }
    bool pads_equal =
        (paddings[0] == paddings[1]) && (paddings[2] == paddings[3]);
    if (!pads_equal) {
      LOG(FATAL)
          << "padding requires pad_left == pad_right, pad_top == pad_bottom";
    }
    auto& context = ctx_->As<OpenCLContext>();
    CHECK(context.cl_context() != nullptr);

70
    auto* x_img = param.x->data<uint16_t, cl::Image2D>();
71 72 73 74 75
    LOG(INFO) << "x_image" << x_img;

    auto out_image_shape = InitImageDimInfoWith(out_dims);
    LOG(INFO) << "out_image_shape = " << out_image_shape["width"] << " "
              << out_image_shape["height"];
76
    auto* out_img = param.output->mutable_data<uint16_t, cl::Image2D>(
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
        out_image_shape["width"], out_image_shape["height"]);
    LOG(INFO) << "out_image" << out_img;

    STL::stringstream kernel_key;
    kernel_key << kernel_func_name_ << build_options_;
    auto kernel = context.cl_context()->GetKernel(kernel_key.str());

    int c_block = (out_dims[1] + 3) / 4;
    int w = out_dims[3];
    int nh = out_dims[0] * out_dims[2];
    auto global_work_size = cl::NDRange(c_block, w, nh);

    cl_int status;
    int arg_idx = 0;
    status = kernel.setArg(arg_idx, *x_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, *out_img);
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(in_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(out_dims[3]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(ksize[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(ksize[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[0]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(strides[1]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[2]));
    CL_CHECK_FATAL(status);
    status = kernel.setArg(++arg_idx, static_cast<const int>(paddings[0]));
    CL_CHECK_FATAL(status);

    status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
        kernel,
        cl::NullRange,
        global_work_size,
        cl::NullRange,
        nullptr,
        event_.get());
    CL_CHECK_FATAL(status);
    context.cl_wait_list()->emplace(out_img, event_);
  }

 private:
  std::string kernel_func_name_{"pool_"};
129
  std::string build_options_{"-DCL_DTYPE_half"};
130 131 132
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

Y
Yan Chunwei 已提交
133 134 135 136 137
}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

138 139
REGISTER_LITE_KERNEL(pool2d,
                     kOpenCL,
140
                     kFP16,
141
                     kImageDefault,
142 143 144 145
                     paddle::lite::kernels::opencl::PoolComputeImage2D,
                     image2d)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
146
                                      PRECISION(kFP16),
147
                                      DATALAYOUT(kImageDefault))})
148 149
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
150
                                       PRECISION(kFP16),
151
                                       DATALAYOUT(kImageDefault))})
152
    .Finalize();