multiclass_nms_kernel.cpp 9.5 KB
Newer Older
E
eclipsess 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "operators/kernel/multiclass_nms_kernel.h"

namespace paddle_mobile {
namespace operators {

constexpr int kOutputDim = 6;
constexpr int kBBoxSize = 4;

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores, const T threshold, int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
  if (top_k > -1 && top_k < static_cast<int>(sorted_indices->size())) {
    sorted_indices->resize(top_k);
  }
}

template <class T>
static inline T BBoxArea(const T* box, const bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If coordinate values are is invalid
    // (e.g. xmax < xmin or ymax < ymin), return 0.
    return static_cast<T>(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If coordinate values are not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = inter_xmax - inter_xmin;
    const T inter_h = inter_ymax - inter_ymin;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <typename T>
static inline void NMSFast(const Tensor& bbox, const Tensor& scores,
                           const T score_threshold, const T nms_threshold,
                           const T eta, const int64_t top_k,
                           std::vector<int>* selected_indices) {
  // The total boxes for each instance.
  int64_t num_boxes = bbox.dims()[0];
  // 4: [xmin ymin xmax ymax]
  int64_t box_size = bbox.dims()[1];

  std::vector<T> scores_data(num_boxes);
  std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
  std::vector<std::pair<T, int>> sorted_indices;
  GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

  selected_indices->clear();
  T adaptive_threshold = nms_threshold;
  const T* bbox_data = bbox.data<T>();

  while (sorted_indices.size() != 0) {
    const int idx = sorted_indices.front().second;
    bool keep = true;
    for (size_t k = 0; k < selected_indices->size(); ++k) {
      if (keep) {
        const int kept_idx = (*selected_indices)[k];
        T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                      bbox_data + kept_idx * box_size, true);
        keep = overlap <= adaptive_threshold;
      } else {
        break;
      }
    }
    if (keep) {
      selected_indices->push_back(idx);
    }
    sorted_indices.erase(sorted_indices.begin());
    if (keep && eta < 1 && adaptive_threshold > 0.5) {
      adaptive_threshold *= eta;
    }
  }
}

template <typename T>
void MultiClassNMS(const Tensor& scores, const Tensor& bboxes,
                   std::map<int, std::vector<int>>* indices, int* num_nmsed_out,
                   const int& background_label, const int& nms_top_k,
                   const int& keep_top_k, const T& nms_threshold,
                   const T& nms_eta, const T& score_threshold) {
  int64_t class_num = scores.dims()[0];
  int64_t predict_dim = scores.dims()[1];
  int num_det = 0;
  for (int64_t c = 0; c < class_num; ++c) {
    if (c == background_label) continue;
    Tensor score = scores.Slice(c, c + 1);
    /// [c] is key
    NMSFast<float>(bboxes, score, score_threshold, nms_threshold, nms_eta,
                   nms_top_k, &((*indices)[c]));
    num_det += (*indices)[c].size();
  }

  *num_nmsed_out = num_det;
  const T* scores_data = scores.data<T>();
  if (keep_top_k > -1 && num_det > keep_top_k) {
    std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
    for (const auto& it : *indices) {
      int label = it.first;
      const T* sdata = scores_data + label * predict_dim;
      const std::vector<int>& label_indices = it.second;
      for (size_t j = 0; j < label_indices.size(); ++j) {
        int idx = label_indices[j];
        // PADDLE_ENFORCE_LT(idx, predict_dim);
        score_index_pairs.push_back(
            std::make_pair(sdata[idx], std::make_pair(label, idx)));
      }
    }
    // Keep top k results per image.
    std::stable_sort(score_index_pairs.begin(), score_index_pairs.end(),
                     SortScorePairDescend<std::pair<int, int>>);
    score_index_pairs.resize(keep_top_k);

    // Store the new indices.
    std::map<int, std::vector<int>> new_indices;
    for (size_t j = 0; j < score_index_pairs.size(); ++j) {
      int label = score_index_pairs[j].second.first;
      int idx = score_index_pairs[j].second.second;
      new_indices[label].push_back(idx);
    }
    new_indices.swap(*indices);
    *num_nmsed_out = keep_top_k;
  }
}

template <typename T>
void MultiClassOutput(const Tensor& scores, const Tensor& bboxes,
                      const std::map<int, std::vector<int>>& selected_indices,
                      Tensor* outs) {
  int predict_dim = scores.dims()[1];
  auto* scores_data = scores.data<T>();
  auto* bboxes_data = bboxes.data<T>();
  auto* odata = outs->data<T>();

  int count = 0;
  for (const auto& it : selected_indices) {
    /// one batch
    int label = it.first;
    const T* sdata = scores_data + label * predict_dim;
    const std::vector<int>& indices = it.second;
    for (size_t j = 0; j < indices.size(); ++j) {
      int idx = indices[j];
      const T* bdata = bboxes_data + idx * kBBoxSize;
      odata[count * kOutputDim] = label;           // label
      odata[count * kOutputDim + 1] = sdata[idx];  // score
      // xmin, ymin, xmax, ymax
      std::memcpy(odata + count * kOutputDim + 2, bdata, 4 * sizeof(T));
      count++;
    }
  }
}

template <>
void MultiClassNMSKernel<CPU, float>::Compute(
    const MultiClassNMSParam& param) const {
  const auto* input_bboxes = param.InputBBoxes();
  const auto& input_bboxes_dims = input_bboxes->dims();

  const auto* input_scores = param.InputScores();
  const auto& input_scores_dims = input_scores->dims();

  auto* outs = param.Out();
  auto background_label = param.BackGroundLabel();
  auto nms_top_k = param.NMSTopK();
  auto keep_top_k = param.KeepTopK();
  auto nms_threshold = param.NMSThreshold();
  auto nms_eta = param.NMSEta();
  auto score_threshold = param.ScoreThreshold();

  int64_t batch_size = input_scores_dims[0];
  int64_t class_num = input_scores_dims[1];
  int64_t predict_dim = input_scores_dims[2];
  int64_t box_dim = input_bboxes_dims[2];

  std::vector<std::map<int, std::vector<int>>> all_indices;
  std::vector<size_t> batch_starts = {0};
  for (int64_t i = 0; i < batch_size; ++i) {
    Tensor ins_score = input_scores->Slice(i, i + 1);
    ins_score.Resize({class_num, predict_dim});

    Tensor ins_boxes = input_bboxes->Slice(i, i + 1);
    ins_boxes.Resize({predict_dim, box_dim});

    std::map<int, std::vector<int>> indices;
    int num_nmsed_out = 0;
    MultiClassNMS<float>(ins_score, ins_boxes, &indices, &num_nmsed_out,
                         background_label, nms_top_k, keep_top_k, nms_threshold,
                         nms_eta, score_threshold);
    all_indices.push_back(indices);
    batch_starts.push_back(batch_starts.back() + num_nmsed_out);
  }

  int num_kept = batch_starts.back();
  if (num_kept == 0) {
    float* od = outs->mutable_data<float>({1});
    od[0] = -1;
  } else {
    outs->mutable_data<float>({num_kept, kOutputDim});
    for (int64_t i = 0; i < batch_size; ++i) {
      Tensor ins_score = input_scores->Slice(i, i + 1);
      ins_score.Resize({class_num, predict_dim});

      Tensor ins_boxes = input_bboxes->Slice(i, i + 1);
      ins_boxes.Resize({predict_dim, box_dim});

      int64_t s = batch_starts[i];
      int64_t e = batch_starts[i + 1];
      if (e > s) {
        Tensor out = outs->Slice(s, e);
        MultiClassOutput<float>(ins_score, ins_boxes, all_indices[i], &out);
      }
    }
  }

  //            framework::LoD lod;
  //            lod.emplace_back(batch_starts);
  //
  //            outs->set_lod(lod);
}

}  // namespace operators
}  // namespace paddle_mobile