conv_bn_kernel.cpp 3.6 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBN_OP

#include "operators/kernel/conv_bn_kernel.h"
H
hanbuhe 已提交
18
#include "fpga/api.h"
Z
zhangyang 已提交
19 20 21 22 23

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
Z
zhangyang 已提交
25
  bool relu_enabled = false;
Z
zhangyang 已提交
26
  Tensor *input = const_cast<Tensor *>(param->Input());
Z
zhangyang 已提交
27 28 29 30 31 32 33 34 35
  auto input_ptr = input->data<half>();
  Tensor *filter = param->Filter();

  Tensor *out = param->Output();
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
36 37
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == param->InputBias()->dims()[0],
                        "Output channel should be equal to bias number");
Z
zhangyang 已提交
38

Z
zhangyang 已提交
39
  const int channel = out->dims()[1];
Z
zhangyang 已提交
40 41 42 43 44 45 46 47 48 49
  float *bs_ptr =
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
50
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
51 52
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
53 54 55
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
Z
zhangyang 已提交
56 57 58

  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
Z
zhangyang 已提交
59
  auto filter_ptr = filter->data<int8_t>();
Z
zhangyang 已提交
60

Z
zhangyang 已提交
61 62 63 64 65 66 67
  int element_num_per_div =
      fpga::get_element_num_per_div(filter, param->Groups());
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

  fpga::format_ofm(out);
  auto out_ptr = out->mutable_data<half>();

Z
zhangyang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  fpga::ConvArgs convArgs;
  convArgs.relu_enabled = relu_enabled;
  convArgs.filter_address = (void *)filter_ptr;
  convArgs.filter_num = filter->dims()[0];
  convArgs.group_num = param->Groups();
  convArgs.sb_address = (void *)bs_ptr;
  convArgs.kernel.stride_h = param->Strides()[0];
  convArgs.kernel.stride_w = param->Strides()[1];
  convArgs.kernel.height = filter->dims()[2];
  convArgs.kernel.width = filter->dims()[3];
  convArgs.image.address = (void *)input_ptr;
  convArgs.image.channels = input->dims()[1];
  convArgs.image.height = input->dims()[2];
  convArgs.image.width = input->dims()[3];
  convArgs.image.pad_height = param->Paddings()[0];
  convArgs.image.pad_width = param->Paddings()[1];
Z
zhangyang 已提交
84
  convArgs.image.scale_address = input->scale;
Z
zhangyang 已提交
85
  convArgs.output.address = (void *)out_ptr;
Z
zhangyang 已提交
86
  convArgs.output.scale_address = out->scale;
Z
zhangyang 已提交
87 88 89 90 91 92
  param->SetFpgaArgs(convArgs);

  return true;
}

template <>
N
nhzlx 已提交
93 94
void ConvBNKernel<FPGA, float>::Compute(
    const FusionConvBNParam<FPGA> &param) const {
Z
zhangyang 已提交
95 96 97 98 99 100 101 102
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif