conv_bn_kernel.cpp 3.4 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBN_OP

#include "operators/kernel/conv_bn_kernel.h"
H
hanbuhe 已提交
18 19
#include "fpga/api.h"
#include "fpga/quantization.h"
Z
zhangyang 已提交
20 21 22 23 24

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
25
bool ConvBNKernel<FPGA, float>::Init(FusionConvBNParam<FPGA> *param) {
Z
zhangyang 已提交
26 27 28 29 30 31 32 33 34 35 36 37
  bool relu_enabled = false;
  const Tensor *input = param->Input();
  auto input_ptr = input->data<half>();
  Tensor *filter = param->Filter();

  Tensor *out = param->Output();
  auto out_ptr = out->mutable_data<half>();
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
38 39
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == param->InputBias()->dims()[0],
                        "Output channel should be equal to bias number");
Z
zhangyang 已提交
40

Z
zhangyang 已提交
41
  const int channel = out->dims()[1];
Z
zhangyang 已提交
42 43 44 45 46 47 48 49 50 51
  float *bs_ptr =
      reinterpret_cast<float *>(fpga::fpga_malloc(2 * channel * sizeof(float)));
  Tensor *new_scale = new Tensor();
  Tensor *new_bias = new Tensor();
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
52
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
53 54 55 56 57
    bs_ptr[i * 2] = new_scale_ptr[i];
    bs_ptr[i * 2 + 1] = new_bias_ptr[i];
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
H
hanbuhe 已提交
58
  fpga::quantize_filter(filter);
Z
zhangyang 已提交
59
  auto filter_ptr = filter->data<int8_t>();
Z
zhangyang 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

  fpga::ConvArgs convArgs;
  convArgs.relu_enabled = relu_enabled;
  convArgs.filter_address = (void *)filter_ptr;
  convArgs.filter_num = filter->dims()[0];
  convArgs.group_num = param->Groups();
  convArgs.sb_address = (void *)bs_ptr;
  convArgs.kernel.stride_h = param->Strides()[0];
  convArgs.kernel.stride_w = param->Strides()[1];
  convArgs.kernel.height = filter->dims()[2];
  convArgs.kernel.width = filter->dims()[3];
  convArgs.image.address = (void *)input_ptr;
  convArgs.image.channels = input->dims()[1];
  convArgs.image.height = input->dims()[2];
  convArgs.image.width = input->dims()[3];
  convArgs.image.pad_height = param->Paddings()[0];
  convArgs.image.pad_width = param->Paddings()[1];
  convArgs.image.scale_address = input->fpga_args().scale_pointer();
  convArgs.output.address = (void *)out_ptr;
  convArgs.output.scale_address = out->fpga_args().scale_pointer();
  param->SetFpgaArgs(convArgs);

  return true;
}

template <>
N
nhzlx 已提交
86 87
void ConvBNKernel<FPGA, float>::Compute(
    const FusionConvBNParam<FPGA> &param) const {
Z
zhangyang 已提交
88 89 90 91 92 93 94 95
  fpga::ComputeFpgaConv(param.FpgaArgs());
}
template class ConvBNKernel<FPGA, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif